【題目】賓館有50間房供游客居住,當(dāng)每間房每天定價(jià)為180元時(shí),賓館會(huì)住滿;當(dāng)每間房每天的定價(jià)每增加10元時(shí),就會(huì)空閑一間房.如果有游客居住,賓館需對(duì)居住的每間房每天支出 20元的費(fèi)用.當(dāng)房?jī)r(jià)定為多少元時(shí),賓館當(dāng)天的利潤(rùn)為10890元?設(shè)房?jī)r(jià)比定價(jià) 180元增加 x元,則有( )
A. (x﹣20)(50﹣)=10890 B. x(50﹣)﹣50×20=10890
C. (180+x﹣20)(50﹣)=10890 D. (x+180)(50﹣)﹣50×20=10890
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=4cm,點(diǎn)E為AC邊上一點(diǎn),且AE=3cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿線段AB向終點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為x s.作∠EPF=90°,與邊BC相交于點(diǎn)F.設(shè)BF長(zhǎng)為ycm.
(1)當(dāng)x= s時(shí),EP=PF;
(2)求在點(diǎn)P運(yùn)動(dòng)過(guò)程中,y與x之間的函數(shù)關(guān)系式;
(3)點(diǎn)F運(yùn)動(dòng)路程的長(zhǎng)是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于點(diǎn)D,點(diǎn)O是AB邊上一點(diǎn),以O為圓心作⊙O且經(jīng)過(guò)A,D兩點(diǎn),交AB于點(diǎn)E.
(1)求證:BC是⊙O的切線;
(2)AC=2,AB=6,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有長(zhǎng)為27m的籬笆,一面利用墻(墻的最大可用長(zhǎng)度 a為12m),圍成中間隔有一道籬笆的矩形花圃,設(shè)花圃的寬為AB=xm,面積為Sm2.
(1)求 S 與 x 的函數(shù)關(guān)系式;
(2)求矩形花圃的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,AB是⊙O的直徑,點(diǎn)P在AB的延長(zhǎng)線上,弦CE交AB于點(diǎn),連結(jié)OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,且PB=9,求⊙O的半徑長(zhǎng)和tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,AC=8cm,BC=6cm,P點(diǎn)在BC上,從B點(diǎn)到C點(diǎn)運(yùn)動(dòng)(不包括 C點(diǎn)),點(diǎn) P運(yùn)動(dòng)的速度為1cm/s;Q點(diǎn)在AC上從C點(diǎn)運(yùn)動(dòng)到A點(diǎn)(不包括A點(diǎn)),速度為2cm/s,若點(diǎn) P、Q 分別從B、C 同時(shí)運(yùn)動(dòng),且運(yùn)動(dòng)時(shí)間記為t秒,請(qǐng)解答下面的問(wèn)題,并寫(xiě)出探索的主要過(guò)程.
(1)當(dāng) t 為何值時(shí),P、Q 兩點(diǎn)的距離為 4cm?
(2)請(qǐng)用配方法說(shuō)明,點(diǎn)P運(yùn)動(dòng)多少時(shí)間時(shí),四邊形BPQA的面積最。孔钚∶娣e是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為3,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn) A(3,3).
(1)求正比例函數(shù)和反比例函數(shù)的解析式;
(2)把直線 OA 向下平移后得到直線 l,與反比例函數(shù)的圖象交于點(diǎn) B(6,m),求 m 的值和直線 l 的解 析式;
(3)在(2)中的直線 l 與 x 軸、y 軸分別交于 C、D,求四邊形 OABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE交AB于點(diǎn)F,⊙O的切線BC與AD的延長(zhǎng)線交于點(diǎn)C,連接AE.
(1)試判斷∠AED與∠C的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若AD=3,∠C=60°,點(diǎn)E是半圓AB的中點(diǎn),則線段AE的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com