【題目】如圖,四邊形ABCD為矩形,連接BD,AB=2AD,點E在AB邊上,連接ED.
(1)若∠ADE=30°,DE=6,求△BDE的面積;
(2)延長CB至點F使得BF=2AD,連接FE并延長交AD于點M,過點A作AN⊥EM于點N,連接BN,求證:FN=AN+BN.
【答案】(1);(2)證明見解析.
【解析】試題分析:(1)在Rt△ADE中,解直角三角形求出EA,DA的值,然后根據AB=2AD求出AB的長,進而求出BE的長,利用三角形的面積公式即可求出面積;
(2)作輔助線,構建全等三角形,證明△FHB≌△ANB,得BH=BN,HF=AN,則△HBN是等腰直角三角形,有NH=NB,根據線段的和代入得結論.
試題解析:
解:(1)在Rt△ADE中,
∵∠EDA=30°,∴EA= ED= ×6=3,
DA=EDcos30°=6×=3,
∴BE=2DA﹣EA=6﹣3,∴S△BED= ×BE×DA= (6﹣3)×3= ;
(2)如圖,過B作BH⊥BN,交FM于H,
∴∠NBH=∠NBA+∠EBH=90°,
又∵∠ABF=∠HBF+∠EBH=90°,
∴∠NBA=∠HBF,
∵CF∥AD,
∴∠AMN=∠F,
∵AN⊥EM,
∴∠AMN+∠MAN=90°,
∠MAN+∠NAB=90°,
∴∠NAB=∠AMN,
∴∠NAB=∠F,
又∵BF=2AD,AB=2AD,
∴AB=BF,
∴△ANB≌△FHB,
∴BN=BH,AN=FH,
∴△BNH是等腰直角三角形,
∴NH=NB,
∵FN=FH+NH
=AN+NB/span>.
科目:初中數學 來源: 題型:
【題目】隨著人民生活水平的不斷提高,我市家庭轎車的擁有量逐年增加.據統(tǒng)計,某小區(qū)2015年底擁有家庭轎車64輛,2017年底家庭轎車的擁有量達到100輛.
(1)若該小區(qū)2015年底到2018年底家庭轎車擁有量的年平均增長率都相同,求該小區(qū)到2018年底家庭轎車將達到多少輛?
(2)為了緩解停車矛盾,該小區(qū)決定投資15萬元再建造若干個停車位.據測算,建造費用分別為室內車位5000元/個,露天車位1000元/個,考慮到實際因素,計劃露天車位的數量不少于室內車位的2倍,但不超過室內車位的2.5倍,求該小區(qū)最多可建兩種車位各多少個?試寫出所有可能的方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D是等邊三角形ABC內一點,將線段AD繞點A順時針旋轉60°,得到線段AE,連接CD,BE.
(1)求證:∠AEB=∠ADC;
(2)連接DE,若∠ADC=105°,求∠BED的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數與反比例函數的圖象交于A、B兩點,點A坐標為,點B坐標為,OA與x軸正半軸夾角的正切值為,直線AB交y軸于點C,過C作y軸的垂線,交反比例函數圖象于點D,連接OD、BD.
(1)求一次函數與反比例函數的解析式;
(2)連接BD,求出BDC的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某初中要調查學校學生(總數 1000 人)雙休日課外閱讀情況,隨機調查了一部分學生,調查得 到的數據分別制成頻數直方圖(如圖 1)和扇形統(tǒng)計圖(如圖 2).
(1)請補全上述統(tǒng)計圖(直接填在圖中);
(2) 試確定這個樣本的中位數和眾數;
(3)請估計該學校 1000 名學生雙休日課外閱讀時間不少于 4 小時的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形 ABCD 中,AB=3,BC=4,E、F 是對角線 AC 上的兩個動點,分 別從 A、C 同時出發(fā)相向而行,速度均為每秒 1 個單位長度,運動時間為 t 秒,其中 0 t 5 .
(1)若 G,H 分別是 AB,DC 中點,求證:四邊形 EGFH 是平行四邊形(E、F 相遇時除外);
(2)在(1)條件下,若四邊形 EGFH 為矩形,求 t 的值;
(3)若 G,H 分別是折線 A-B-C,C-D-A 上的動點,與 E,F 相同的速度同時出發(fā),若 四邊形 EGFH 為菱形,求 t 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線分別交x軸,y軸于A、B兩點,點A關于原點O的對稱點為點D,點C在第一象限,且四邊形ABCD為平行四邊形.
(1)在圖①中,畫出平行四邊形ABCD,并直接寫出C、D兩點的坐標;
(2)動點P從點C出發(fā),沿線段CB以每秒1個單位的速度向終點B運動;同時,動點Q從點A出發(fā),沿線段AD以每秒1個單位的速度向終點D運動,設點P運動的時間為t秒.
①若△POQ的面積為3,求t的值;
②點O關于B點的對稱點為M,點C關于x軸的對稱點為N,過點P作PH⊥x軸,問MP+PH+NH是否有最小值,如果有求出相應的點P的坐標;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校田徑運動會快要舉行了,小剛用自己積攢的零花錢買了一雙運動鞋,順便想研究一下鞋碼與腳的大小之間的關系,于是,小剛回家量了一下媽媽36碼的鞋子,內長是23cm;量了爸爸42碼的鞋子,內長是26cm;又量了自己剛買的鞋子,內長是24.5cm;然后,又看了看自己所買的鞋的鞋碼,可是怎么也搞不懂一雙鞋子的鞋碼與其內長到底是什么關系,帶著這個問題小剛去問數學老師,數學老師說:設鞋內長是xcm,這鞋子的號碼是y,那么y是x的一次函數,請你寫出這個一次函數關系式,并算一算小剛買了鞋是多少碼?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com