若f(x)在[a,b]上連續(xù)且單調(diào)遞減,又f(x)在[a,b]上的值域為[m,n],則下列正確的是( 。
|
科目:高中數(shù)學(xué) 來源:江蘇省高考數(shù)學(xué)一輪復(fù)習(xí)單元試卷18:極限(解析版) 題型:選擇題
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||
B、
| ||
C、
| ||
D、
|
科目:高中數(shù)學(xué) 來源:不詳 題型:單選題
A.
| B.
| ||||
C.
| D.
|
科目:高中數(shù)學(xué) 來源: 題型:
A.f(x)在[a,b]上單調(diào)遞增,且f(b)>0
B.f(x)在[a,b]上單調(diào)遞增,且f(b)<0
C.f(x)在[a,b]上單調(diào)遞減,且f(b)<0
D.f(x)在[a,b]上單調(diào)遞增,但f(b)的符號無法判斷
科目:高中數(shù)學(xué) 來源: 題型:013
若f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且x∈(a,b)時,f'(x)>0,又
f(a<0,則( )
A. f(x)在[a,b]上單調(diào)遞增,且f(b)>0
B. f(x)在[a,b]上單調(diào)遞增,且f(b)<0
C. f(x)在[a,b]上單調(diào)遞減,且f(b)<0
D. f(x)在[a,b]單調(diào)遞增,但f(b)的符號無法判斷
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013
f(a<0,則( )
A. f(x)在[a,b]上單調(diào)遞增,且f(b)>0
B. f(x)在[a,b]上單調(diào)遞增,且f(b)<0
C. f(x)在[a,b]上單調(diào)遞減,且f(b)<0
D. f(x)在[a,b]單調(diào)遞增,但f(b)的符號無法判斷
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:解答題
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時單調(diào)遞減;當(dāng)時單調(diào)遞增,故當(dāng)時,取最小值
于是對一切恒成立,當(dāng)且僅當(dāng). 、
令則
當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.
故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng),即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com