(0,
π
2
)
上是增函數(shù),且最小正周期為π的函數(shù)是( 。
A.y=sin|x|B.y=|cosx|C.y=cos|x|D.y=|sinx|
D
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(0,
π
2
)
上是增函數(shù),且最小正周期為π的函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(0,
π
2
)
上是增函數(shù),且最小正周期為π的函數(shù)是(  )
A.y=sin|x|B.y=|cosx|C.y=cos|x|D.y=|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù),且具有以下性質(zhì):①

;③在[0,2]上為單調(diào)增函數(shù),則對于下述命題:

(1)的圖象關(guān)于原點(diǎn)對稱 

(2)為周期函數(shù)且最小正周期是4

(3)在區(qū)間[2,4]上是減函數(shù)

正確命題的個數(shù)為                                                                                                 

A.0個                        B.1個                       C.2個                        D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù),且具有以下性質(zhì):①;

;③在[0,2]上為單調(diào)增函數(shù),則對于下述命題:

(1)的圖象關(guān)于原點(diǎn)對稱 

(2)為周期函數(shù)且最小正周期是4

(3)在區(qū)間[2,4]上是減函數(shù)

正確命題的個數(shù)為                                                                                                 

A.0個                       B.1個                        C.2個                       D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的定義域?yàn)椋?∞,+∞),且具有以下性質(zhì):①f(-x)-f(x)=0;②f(x+2)•f(x)=1;③y=f(x)在[0,2]上為單調(diào)增函數(shù),則對于下述命題:
(1)y=f(x)的圖象關(guān)于原點(diǎn)對稱
(2)y=f(x)為周期函數(shù)且最小正周期是4
(3)y=f(x)在區(qū)間[2,4]上是減函數(shù)
正確命題的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的定義域?yàn)?-∞,+∞),且具有以下性質(zhì):①f(-x)-f(x)=0;②f(x+2)·f(x)=1;③y=f(x)在[0,2]上為單調(diào)增函數(shù),則對于下述命題:

(1)y=f(x)的圖象關(guān)于原點(diǎn)對稱

(2)y=f(x)為周期函數(shù)且最小正周期是4

(3)y=f(x)在區(qū)間[2,4]上是減函數(shù)

正確命題的個數(shù)為

A.0                 B.1                 C.2                 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年安徽省高三數(shù)學(xué)沖刺模擬練習(xí)試卷(解析版) 題型:選擇題

函數(shù)y=f(x)的定義域?yàn)椋?∞,+∞),且具有以下性質(zhì):①f(-x)-f(x)=0;②f(x+2)•f(x)=1;③y=f(x)在[0,2]上為單調(diào)增函數(shù),則對于下述命題:
(1)y=f(x)的圖象關(guān)于原點(diǎn)對稱
(2)y=f(x)為周期函數(shù)且最小正周期是4
(3)y=f(x)在區(qū)間[2,4]上是減函數(shù)
正確命題的個數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

函數(shù)y=f(x)的定義域?yàn)椋?∞,+∞),且具有以下性質(zhì):①f(-x)-f(x)=0;②f(x+2)•f(x)=1;③y=f(x)在[0,2]上為單調(diào)增函數(shù),則對于下述命題:
(1)y=f(x)的圖象關(guān)于原點(diǎn)對稱
(2)y=f(x)為周期函數(shù)且最小正周期是4
(3)y=f(x)在區(qū)間[2,4]上是減函數(shù)
正確命題的個數(shù)為


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對于任意的x∈R恒有f(x+1)=-f(x),已知當(dāng)x∈[0,1]時(shí),f(x)=3x.則
①2是f(x)的周期;
②函數(shù)f(x)在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值為1,最小值為0;
④直線x=2是函數(shù)f(x)圖象的一條對稱軸.
其中所有正確命題的序號是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=sin(?x+φ)(?>0,φ∈(-
π
2
,
π
2
))
的最小正周期為π,且其圖象關(guān)  于直線x=
π
12
對稱,則在下面四個結(jié)論:
①圖象關(guān)于點(diǎn)(
π
4
,0)
對稱;
②圖象關(guān)于點(diǎn)(
π
3
,0)
對稱,
③在[0,
π
6
]
上是增函數(shù)中,
所有正確結(jié)論的編號為

查看答案和解析>>


同步練習(xí)冊答案