0  441581  441589  441595  441599  441605  441607  441611  441617  441619  441625  441631  441635  441637  441641  441647  441649  441655  441659  441661  441665  441667  441671  441673  441675  441676  441677  441679  441680  441681  441683  441685  441689  441691  441695  441697  441701  441707  441709  441715  441719  441721  441725  441731  441737  441739  441745  441749  441751  441757  441761  441767  441775  447090 

3.空間向量的直角坐標(biāo)運(yùn)算律:(1)若,

,

,,

 ,

(2)若,,則

一個(gè)向量在直角坐標(biāo)系中的坐標(biāo)等于表示這個(gè)向量的有向線段的終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo)

4模長(zhǎng)公式:若, 則

試題詳情

1空間直角坐標(biāo)系:(1)若空間的一個(gè)基底的三個(gè)基向量互相垂直,且長(zhǎng)為,這個(gè)基底叫單位正交基底,用表示;(2)在空間選定一點(diǎn)和一個(gè)單位正交基底,以點(diǎn)為原點(diǎn),分別以的方向?yàn)檎较蚪⑷龡l數(shù)軸:軸、軸、軸,它們都叫坐標(biāo)軸.我們稱(chēng)建立了一個(gè)空間直角坐標(biāo)系,點(diǎn)叫原點(diǎn),向量 都叫坐標(biāo)向量.通過(guò)每?jī)蓚(gè)坐標(biāo)軸的平面叫坐標(biāo)平面,分別稱(chēng)為平面,平面,平面;

2.空間直角坐標(biāo)系中的坐標(biāo): 在空間直角坐標(biāo)系中,對(duì)空間任一點(diǎn),存在唯一的有序?qū)崝?shù)組,使,有序?qū)崝?shù)組叫作向量在空間直角坐標(biāo)系中的坐標(biāo),記作叫橫坐標(biāo),叫縱坐標(biāo),叫豎坐標(biāo).

試題詳情

5.在△ABC中,已知,判定△ABC是什么三角形。

※§8.3空間向量及其運(yùn)算    

試題詳情

4.在△ABC中,已知B=30°,b=50,c=150,解三角形并判斷三角形的形狀!                

試題詳情

3.某人在C點(diǎn)測(cè)得塔頂A在南偏西80°,仰角為45°,此人沿南偏東40°方向前進(jìn)10米到0,測(cè)得塔頂A仰角為30°,則塔高=     。

試題詳情

2.△ABC中,若邊a:b:c=:(1+):2,則內(nèi)角A=      。

試題詳情

1.已知銳角三角形的邊長(zhǎng)分別為2,3,x,則第三邊x的取值范圍是(  )

A.1<x<5  B.<x<  C.<x<5    D.1<x<

試題詳情

2.由于本節(jié)內(nèi)容與代數(shù)、幾何聯(lián)系比較緊,故讀者需對(duì)解斜三角形、解析幾何中的圓錐曲線等知識(shí)非常熟悉方可。

三  經(jīng)典例題導(dǎo)講

[例1]在ABC中,已知a2=b2+bc+c2,則角A為( )

A.   B. C.  D.

錯(cuò)解:選A

錯(cuò)因:公式記不牢,誤將余弦定理中的“減”記作“加”。

正解:∵a2=b2+bc+c2=b2+c2-2bc(-)=b2+c2-2bc·cos

 ∴∠A=

 選 C.

[例2]在△ABC中,已知,試判別其形狀。

錯(cuò)解:等腰三角形。

錯(cuò)因:忽視了兩角互補(bǔ),正弦值也相等的情形。直接由得,,即,則。接著下結(jié)論,所求三角形為等腰三角形

正解:由得,,即

    則,故三角形為直角三角形或等腰三角形。

[例3]過(guò)拋物線:y2=2px(p>0)頂點(diǎn)O作兩條互相垂直的弦OA、OB(如圖),求證:直線AB過(guò)一定點(diǎn),并求出這一定點(diǎn).

分析: 對(duì)于向量a=(x1,y1),b=(x2,y2),有a//bx1y2-x2y1=0.可以用來(lái)處理解析幾何中的三點(diǎn)共線與兩直線平行問(wèn)題.

證明:由題意知可設(shè)A點(diǎn)坐標(biāo)為(,t1),B點(diǎn)坐標(biāo)為(,t2) 

=(,t1), =(,t2),

∵OA⊥OB,∴=0+t1•t2=0

t1•t2=-4p2  

設(shè)直線AB過(guò)點(diǎn)M(a,b),則=(a-,b-t2),=(-,t1-t2),

由于向量是共線向量,∴(a-)(t1-t2)= (b-t2)(-)

化簡(jiǎn)得2p(a-2p)=b(t1+t2)

 顯然當(dāng)a=2p,b=0時(shí)等式對(duì)任意的成立

∴直線AB過(guò)定點(diǎn),且定點(diǎn)坐標(biāo)為M(2p,0)

四  典型習(xí)題導(dǎo)練

試題詳情

1.初中學(xué)過(guò)的勾股定理只是余弦定理的一種特殊情況。如當(dāng)=時(shí),=0,此時(shí)有;

試題詳情

2.正弦定理 在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,并且都等于外接圓的直徑,即          

       

試題詳情


同步練習(xí)冊(cè)答案