0  438423  438431  438437  438441  438447  438449  438453  438459  438461  438467  438473  438477  438479  438483  438489  438491  438497  438501  438503  438507  438509  438513  438515  438517  438518  438519  438521  438522  438523  438525  438527  438531  438533  438537  438539  438543  438549  438551  438557  438561  438563  438567  438573  438579  438581  438587  438591  438593  438599  438603  438609  438617  447090 

2.;

試題詳情

1.

試題詳情

3.等比數(shù)列的性質(zhì)

①等比數(shù)列任意兩項(xiàng)間的關(guān)系:如果是等數(shù)列的第項(xiàng),是等差數(shù)列的第項(xiàng),且,公,則有;

②對于等比數(shù)列,若,則,也就是:,如圖所示:。

③若數(shù)列是等數(shù)列,是其前n項(xiàng)的和,,那么,成等數(shù)列。

如下圖所示:

試題詳情

2.等比數(shù)列的判定方法

①定義法:對于數(shù)列,若,則數(shù)列是等比數(shù)列;

②等比中項(xiàng):對于數(shù)列,若,則數(shù)列是等比數(shù)列。

試題詳情

1.等比數(shù)列的知識要點(diǎn)(可類比等差數(shù)列學(xué)習(xí))

(1)掌握等比數(shù)列定義q(常數(shù))(nN),同樣是證明一個(gè)數(shù)列是等比數(shù)列的依據(jù),也可由an·an+2來判斷;

(2)等比數(shù)列的通項(xiàng)公式為ana1·qn-1;

(3)對于Ga、b 的等差中項(xiàng),則G2ab,G=±;

(4)特別要注意等比數(shù)列前n 項(xiàng)和公式應(yīng)分為q=1與q≠1兩類,當(dāng)q=1時(shí),Snna1,當(dāng)q≠1時(shí),Sn,Sn。

試題詳情

題型1:等比數(shù)列的概念

例1.“公差為0的等差數(shù)列是等比數(shù)列”;“公比為的等比數(shù)列一定是遞減數(shù)列”;“a,b,c三數(shù)成等比數(shù)列的充要條件是b2=ac”;“a,b,c三數(shù)成等差數(shù)列的充要條件是2b=a+c”,以上四個(gè)命題中,正確的有(   )

A.1個(gè)           B.2個(gè)            C.3個(gè)          D.4個(gè)

解析:四個(gè)命題中只有最后一個(gè)是真命題。

命題1中未考慮各項(xiàng)都為0的等差數(shù)列不是等比數(shù)列;

命題2中可知an+1=an×,an+1<an未必成立,當(dāng)首項(xiàng)a1<0時(shí),an<0,則an>an,即an+1>an,此時(shí)該數(shù)列為遞增數(shù)列;

命題3中,若a=b=0,c∈R,此時(shí)有,但數(shù)列a,b,c不是等比數(shù)列,所以應(yīng)是必要而不充分條件,若將條件改為b=,則成為不必要也不充分條件。

點(diǎn)評:該題通過一些選擇題的形式考察了有關(guān)等比數(shù)列的一些重要結(jié)論,為此我們要注意一些有關(guān)等差數(shù)列、等比數(shù)列的重要結(jié)論。

例2.命題1:若數(shù)列{an}的前n項(xiàng)和Sn=an+b(a≠1),則數(shù)列{an}是等比數(shù)列;

命題2:若數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a≠0),則數(shù)列{an}是等差數(shù)列;

命題3:若數(shù)列{an}的前n項(xiàng)和Sn=na-n,則數(shù)列{an}既是等差數(shù)列,又是等比數(shù)列;上述三個(gè)命題中,真命題有(   )

A.0個(gè)            B.1個(gè)            C.2個(gè)           D.3個(gè)

解析: 由命題1得,a1=a+b,當(dāng)n≥2時(shí),an=Sn-Sn-1=(a-1)·an-1。若{an}是等比數(shù)列,則=a,即=a,所以只有當(dāng)b=-1且a≠0時(shí),此數(shù)列才是等比數(shù)列。

由命題2得,a1=a+b+c,當(dāng)n≥2時(shí),an=Sn-Sn-1=2na+b-a,若{an}是等差數(shù)列,則a2-a1=2a,即2a-c=2a,所以只有當(dāng)c=0時(shí),數(shù)列{an}才是等差數(shù)列。

由命題3得,a1=a-1,當(dāng)n≥2時(shí),an=Sn-Sn-1=a-1,顯然{an}是一個(gè)常數(shù)列,即公差為0的等差數(shù)列,因此只有當(dāng)a-1≠0;即a≠1時(shí)數(shù)列{an}才又是等比數(shù)列。

點(diǎn)評:等比數(shù)列中通項(xiàng)與求和公式間有很大的聯(lián)系,上述三個(gè)命題均涉及到Sn與an的關(guān)系,它們是an=,正確判斷數(shù)列{an}是等差數(shù)列或等比數(shù)列,都必須用上述關(guān)系式,尤其注意首項(xiàng)與其他各項(xiàng)的關(guān)系。上述三個(gè)命題都不是真命題,選擇A。

題型2:等比數(shù)列的判定

例3.(2000全國理,20)(Ⅰ)已知數(shù)列{cn},其中cn=2n+3n,且數(shù)列{cn+1pcn}為等比數(shù)列,求常數(shù)p;(Ⅱ)設(shè){an}、{bn}是公比不相等的兩個(gè)等比數(shù)列,cn=an+bn,證明數(shù)列{cn}不是等比數(shù)列。

解析:(Ⅰ)解:因?yàn)閧cn+1pcn}是等比數(shù)列,

故有:(cn+1pcn)2=(cn+2pcn+1)(cnpcn-1),

cn=2n+3n代入上式,得:

[2n+1+3n+1p(2n+3n)]2=[2n+2+3n+2p(2n+1+3n+1)]·[2n+3np(2n-1+3n-1)],

即[(2-p)2n+(3-p)3n2

=[(2-p)2n+1+(3-p)3n+1][(2-p)2n-1+(3-p)3n-1],

整理得(2-p)(3-p)·2n·3n=0,解得p=2或p=3。

(Ⅱ)證明:設(shè){an}、{bn}的公比分別為pq,pq,cn=an+bn。

為證{cn}不是等比數(shù)列只需證c22c1·c3

事實(shí)上,c22=(a1p+b1q)2a12p2+b12q2+2a1b1pq

c1·c3=(a1+b1)(a1p2+b1q2)=a12p2+b12q2+a1b1(p2+q2),

由于pq,p2+q2>2pq,又a1b1不為零,

因此c22c1·c3,故{cn}不是等比數(shù)列。

點(diǎn)評:本題主要考查等比數(shù)列的概念和基本性質(zhì),推理和運(yùn)算能力。

例4.(2003京春,21)如圖3-1,在邊長為l的等邊△ABC中,圓O1為△ABC內(nèi)切圓,圓O2與圓O1外切,且與AB,BC相切,…,圓On+1與圓On外切,且與AB、BC相切,如此無限繼續(xù)下去.記圓On的面積為an(n∈N*),證明{an}是等比數(shù)列;

證明:記rn為圓On的半徑,則r1=tan30°=。=sin30°=,所以rn=rn-1(n≥2),于是a1=πr12=,故{an}成等比數(shù)列。

點(diǎn)評:該題考察實(shí)際問題的判定,需要對實(shí)際問題情景進(jìn)行分析,最終對應(yīng)數(shù)值關(guān)系建立模型加以解析。

題型3:等比數(shù)列的通項(xiàng)公式及應(yīng)用

例5.一個(gè)等比數(shù)列有三項(xiàng),如果把第二項(xiàng)加上4,那么所得的三項(xiàng)就成為等差數(shù)列,如果再把這個(gè)等差數(shù)列的第三項(xiàng)加上32,那么所得的三項(xiàng)又成為等比數(shù)列,求原來的等比數(shù)列。

解析:設(shè)所求的等比數(shù)列為a,aq,aq2;

則2(aq+4)=a+aq2,且(aq+4)2=a(aq2+32);

解得a=2,q=3或a=,q=-5;

故所求的等比數(shù)列為2,6,18或,-。

點(diǎn)評:第一種解法利用等比數(shù)列的基本量,先求公比,后求其它量,這是解等差數(shù)列、等比數(shù)列的常用方法,其優(yōu)點(diǎn)是思路簡單、實(shí)用,缺點(diǎn)是有時(shí)計(jì)算較繁。

例6.(2006年陜西卷)已知正項(xiàng)數(shù)列,其前項(xiàng)和滿足成等比數(shù)列,求數(shù)列的通項(xiàng)

解析:∵10Sn=an2+5an+6, ①

∴10a1=a12+5a1+6,解之得a1=2或a1=3。

又10Sn-1=an-12+5an-1+6(n≥2),②

由①-②得 10an=(an2-an-12)+6(an-an-1),即(an+an-1)(an-an-1-5)=0

∵an+an-1>0  , ∴an-an-1=5 (n≥2)。

當(dāng)a1=3時(shí),a3=13,a15=73,a1, a3,a15不成等比數(shù)列

∴a1≠3;

當(dāng)a1=2時(shí),,a3=12, a15=72,有 a32=a1a15 , ∴a1=2, ∴an=5n-3。

點(diǎn)評:該題涉及等比數(shù)列的求和公式與等比數(shù)列通項(xiàng)之間的關(guān)系,最終求得結(jié)果。

題型4:等比數(shù)列的求和公式及應(yīng)用

例7.(1)(2006年遼寧卷)在等比數(shù)列中,,前項(xiàng)和為,若數(shù)列也是等比數(shù)列,則等于(  )

A.         B.            C.             D.

(2)(2006年北京卷)設(shè),則等于(  )

    A.        B.    C.     D.

(3)(1996全國文,21)設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3+S6=2S9,求數(shù)列的公比q;解析:(1)因數(shù)列為等比,則,因數(shù)列也是等比數(shù)列,

,所以,故選擇答案C。

(2)D;

(3)解:若q=1,則有S3=3a1S6=6a1,S9=9a1。

a1≠0,得S3+S6≠2S9,顯然q=1與題設(shè)矛盾,故q≠1。

S3+S6=2S9,得,整理得q3(2q6q3-1)=0,由q≠0,得2q6q3-1=0,從而(2q3+1)(q3-1)=0,因q3≠1,故q3=-,所以q=-。

點(diǎn)評:對于等比數(shù)列求和問題要先分清數(shù)列的通項(xiàng)公式,對應(yīng)好首項(xiàng)和公比求出最終結(jié)果即可。

例8.(1)(2002江蘇,18)設(shè){an}為等差數(shù)列,{bn}為等比數(shù)列,a1b1=1,a2+a4b3,b2b4a3.分別求出{an}及{bn}的前10項(xiàng)的和S10T10;

(2)(2001全國春季北京、安徽,20)在1與2之間插入n個(gè)正數(shù)a1a2,a3……,an,使這n+2個(gè)數(shù)成等比數(shù)列;又在1與2之間插入n個(gè)正數(shù)b1,b2,b3,……,bn,使這n+2個(gè)數(shù)成等差數(shù)列.記Ana1a2a3……an,Bnb1+b2+b3+……+bn.

(Ⅰ)求數(shù)列{An}和{Bn}的通項(xiàng);

(Ⅱ)當(dāng)n≥7時(shí),比較AnBn的大小,并證明你的結(jié)論。

(3)(2002天津理,22)已知{an}是由非負(fù)整數(shù)組成的數(shù)列,滿足a1=0,a2=3,

an+1an=(an-1+2)(an-2+2),n=3,4,5,….

(Ⅰ)求a3;

(Ⅱ)證明anan-2+2,n=3,4,5,…;

(Ⅲ)求{an}的通項(xiàng)公式及其前n項(xiàng)和Sn

解析:(1)∵{an}為等差數(shù)列,{bn}為等比數(shù)列,

a2+a4=2a3,b2b4b32

已知a2+a4b3,b2b4a3,

b3=2a3,a3b32

b3=2b32

b3≠0  ∴b3,a3

a1=1,a3知{an}的公差為d,

S10=10a1+

b1=1,b3知{bn}的公比為qq

當(dāng)q時(shí),

當(dāng)q時(shí),

(2)(Ⅰ)設(shè)公比為q,公差為d,等比數(shù)列1,a1,a2,……,an,2,等差數(shù)列1,b1,b2,……,bn,2。

A1a1=1·q  A2=1·q·1·q2  A3=1·q·1·q2·1·q3

又∵an+2=1·qn+1=2得qn+1=2,

Anq·q2qnq(n=1,2,3…)

又∵bn+2=1+(n+1)d=2  ∴(n+1)d=1

B1b1=1+d  B2b2+b1=1+d+1+2d  Bn=1+d+…+1+ndn

(Ⅱ)AnBn,當(dāng)n≥7時(shí)

證明:當(dāng)n=7時(shí),23.5=8·An  Bn×7,∴AnBn

設(shè)當(dāng)nk時(shí),AnBn,則當(dāng)nk+1時(shí),       

又∵Ak+1·  AkBk  ∴Ak+1·k

Ak+1Bk+1

又∵k=8,9,10…  ∴Ak+1Bk+1>0,綜上所述,AnBn成立.

(3)(Ⅰ)解:由題設(shè)得a3a4=10,且a3、a4均為非負(fù)整數(shù),所以a3的可能的值為1,2,5,10.

a3=1,則a4=10,a5,與題設(shè)矛盾.

a3=5,則a4=2,a5,與題設(shè)矛盾.

a3=10,則a4=1,a5=60,a6,與題設(shè)矛盾.

所以a3=2.

(Ⅱ)用數(shù)學(xué)歸納法證明:

①當(dāng)n=3,a3a1+2,等式成立;

②假設(shè)當(dāng)nk(k≥3)時(shí)等式成立,即akak-2+2,由題設(shè)ak+1ak=(ak-1+2)·(ak-2+2),因?yàn)?i>akak-2+2≠0,所以ak+1ak-1+2,

也就是說,當(dāng)nk+1時(shí),等式ak+1ak-1+2成立;

根據(jù)①和②,對于所有n≥3,有an+1=an-1+2。

(Ⅲ)解:由a2k-1a2(k-1)-1+2,a1=0,及a2ka2(k-1)+2,a2=3得a2k-1=2(k-1),a2k=2k+1,k=1,2,3,…,即ann+(-1)n,n=1,2,3,…。

所以Sn

點(diǎn)評:本小題主要考查數(shù)列與等差數(shù)列前n項(xiàng)和等基礎(chǔ)知識,以及準(zhǔn)確表述,分析和解決問題的能力。

題型5:等比數(shù)列的性質(zhì)

例9.(1)(2005江蘇3)在各項(xiàng)都為正數(shù)的等比數(shù)列{an}中,首項(xiàng)a1=3,前三項(xiàng)和為21,則a3+a4+a5=(   )

(A)33     (B)72     (C)84     (D)189

(2)(2000上海,12)在等差數(shù)列{an}中,若a10=0,則有等式a1+a2+…+an=a1+a2+…+a19n(n<19,n∈N成立.類比上述性質(zhì),相應(yīng)地:在等比數(shù)列{bn}中,若b9=1,則有等式   成立。

解析:(1)答案:C;解:設(shè)等比數(shù)列{an}的公比為q(q>0),由題意得:a1+a2+a3=21,即3+3q+3q2=21,q2+q-6=0,求得q=2(q=-3舍去),所以a3+a4+a5=q2(a1+a2+a3)=4故選C。

(2)答案:b1b2bnb1b2b17n(n<17,n∈N*);

解:在等差數(shù)列{an}中,由a10=0,得a1+a19a2+a18=…=an+a20nan+1+a19n=2a10=0,

所以a1+a2+…+an+…+a19=0,即a1+a2+…+an=-a19a18-…-an+1

又∵a1=-a19,a2=-a18,…,a19n=-an+1

a1+a2+…+an=-a19a18-…-an+1a1+a2+…+a19n,

a9=0,同理可得a1+a2+…+ana1+a2+a17n

相應(yīng)地等比數(shù)列{bn}中,則可得:b1b2bnb1b2b17n(n<17,n∈N*)。

點(diǎn)評:本題考查了等比數(shù)列的相關(guān)概念及其有關(guān)計(jì)算能力。

例10.(1)設(shè)首項(xiàng)為正數(shù)的等比數(shù)列,它的前n項(xiàng)和為80,前2n項(xiàng)和為6560,且前n項(xiàng)中數(shù)值最大的項(xiàng)為54,求此數(shù)列的首項(xiàng)和公比q。

(2)在之間插入n個(gè)正數(shù),使這個(gè)數(shù)依次成等比數(shù)列,求所插入的n個(gè)數(shù)之積。

(3)設(shè)等比數(shù)列{an}的各項(xiàng)均為正數(shù),項(xiàng)數(shù)是偶數(shù),它的所有項(xiàng)的和等于偶數(shù)項(xiàng)和的4倍,且第二項(xiàng)與第四項(xiàng)的積是第3項(xiàng)與第4項(xiàng)和的9倍,問數(shù)列{lgan}的前多少項(xiàng)和最大?(lg2=0  3,lg3=0.4)

解析:(1)設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,依題意設(shè):a1>0,Sn=80 ,S2n=6560。

 ∵S2n≠2Sn ,∴q≠1;

從而 =80,且=6560。

兩式相除得1+qn=82 ,即qn=81。

∴a1=q-1>0 即q>1,從而等比數(shù)列{an}為遞增數(shù)列,故前n項(xiàng)中數(shù)值最大的項(xiàng)為第n項(xiàng)。

∴a1qn-1=54,從而(q-1)qn-1=qn-qn-1=54。

∴qn-1=81-54=27

∴q==3。

∴a1=q-1=2

故此數(shù)列的首為2,公比為3。

(2)解法1:設(shè)插入的n個(gè)數(shù)為,且公比為q,

。

解法2:設(shè)插入的n個(gè)數(shù)為,

(3)解法一  設(shè)公比為q,項(xiàng)數(shù)為2m,m∈N*,

依題意有:,

化簡得

設(shè)數(shù)列{lgan}前n項(xiàng)和為Sn,

Sn=lga1+lga1q2+…+lga1qn1=lga1n·q1+2+…+(n1)

=nlga1+n(n-1)·lgq=n(2lg2+lg3)-n(n-1)lg3

=(-n2+(2lg2+lg3)·n

可見,當(dāng)n=時(shí),Sn最大,

=5,故{lgan}的前5項(xiàng)和最大,

解法二  接前,,于是lgan=lg[108()n1]=lg108+(n-1)lg,

∴數(shù)列{lgan}是以lg108為首項(xiàng),以lg為公差的等差數(shù)列,

令lgan≥0,得2lg2-(n-4)lg3≥0,

n=5.5,

由于n∈N*,可見數(shù)列{lgan}的前5項(xiàng)和最大。

點(diǎn)評:第一種解法利用等比數(shù)列的基本量,先求公比,后求其它量,這是解等差數(shù)列、等比數(shù)列的常用方法,其優(yōu)點(diǎn)是思路簡單、實(shí)用,缺點(diǎn)是有時(shí)計(jì)算較繁;第二種解法利用等比數(shù)列的性質(zhì),與“首末項(xiàng)等距”的兩項(xiàng)積相等,這在解題中常用到。

題型6:等差、等比綜合問題

例11.(2006年廣東卷)已知公比為的無窮等比數(shù)列各項(xiàng)的和為9,無窮等比數(shù)列各項(xiàng)的和為。

(Ⅰ)求數(shù)列的首項(xiàng)和公比;

(Ⅱ)對給定的,設(shè)是首項(xiàng)為,公差為的等差數(shù)列.求數(shù)列的前10項(xiàng)之和。

解析:(Ⅰ)依題意可知:,

(Ⅱ)由(Ⅰ)知,,所以數(shù)列的的首項(xiàng)為,公差,,即數(shù)列的前10項(xiàng)之和為155。

點(diǎn)評:對于出現(xiàn)等差、等比數(shù)列的綜合問題,一定要區(qū)分開各自的公式,不要混淆。

試題詳情

4.等比數(shù)列前n項(xiàng)和公式

一般地,設(shè)等比數(shù)列的前n項(xiàng)和是,當(dāng)時(shí),;當(dāng)q=1時(shí),(錯(cuò)位相減法)。

說明:(1)各已知三個(gè)可求第四個(gè);(2)注意求和公式中是,通項(xiàng)公式中是不要混淆;(3)應(yīng)用求和公式時(shí),必要時(shí)應(yīng)討論的情況。

試題詳情

3.等比中項(xiàng)

如果在中間插入一個(gè)數(shù),使成等比數(shù)列,那么叫做的等比中項(xiàng)(兩個(gè)符號相同的非零實(shí)數(shù),都有兩個(gè)等比中項(xiàng))。

試題詳情

2.等比數(shù)列通項(xiàng)公式為:

說明:(1)由等比數(shù)列的通項(xiàng)公式可以知道:當(dāng)公比時(shí)該數(shù)列既是等比數(shù)列也是等差數(shù)列;(2)等比數(shù)列的通項(xiàng)公式知:若為等比數(shù)列,則。

試題詳情

1.等比數(shù)列定義

一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比;公比通常用字母表示,即:數(shù)列對于數(shù)列(1)(2)(3)都是等比數(shù)列,它們的公比依次是2,5,。(注意:“從第二項(xiàng)起”、“常數(shù)”、等比數(shù)列的公比和項(xiàng)都不為零)

試題詳情


同步練習(xí)冊答案