0  426676  426684  426690  426694  426700  426702  426706  426712  426714  426720  426726  426730  426732  426736  426742  426744  426750  426754  426756  426760  426762  426766  426768  426770  426771  426772  426774  426775  426776  426778  426780  426784  426786  426790  426792  426796  426802  426804  426810  426814  426816  426820  426826  426832  426834  426840  426844  426846  426852  426856  426862  426870  447090 

5.正確理解橢圓、雙曲線和拋物線的定義,明確焦點(diǎn)、焦距的概念;能根據(jù)橢圓、雙曲線和拋物線的定義推導(dǎo)它們的標(biāo)準(zhǔn)方程;記住橢圓、雙曲線和拋物線的各種標(biāo)準(zhǔn)方程;能根據(jù)條件,求出橢圓、雙曲線和拋物線的標(biāo)準(zhǔn)方程;掌握橢圓、雙曲線和拋物線的幾何性質(zhì):范圍、對(duì)稱性、頂點(diǎn)、離心率、準(zhǔn)線(雙曲線的漸近線)等,從而能迅速、正確地畫出橢圓、雙曲線和拋物線;掌握a、b、c、p、e之間的關(guān)系及相應(yīng)的幾何意義;利用橢圓、雙曲線和拋物線的幾何性質(zhì),確定橢圓、雙曲線和拋物線的標(biāo)準(zhǔn)方程,并解決簡(jiǎn)單問題;理解橢圓、雙曲線和拋物線的參數(shù)方程,并掌握它的應(yīng)用;掌握直線與橢圓、雙曲線和拋物線位置關(guān)系的判定方法.

試題詳情

4.掌握?qǐng)A的標(biāo)準(zhǔn)方程:(r>0),明確方程中各字母的幾何意義,能根據(jù)圓心坐標(biāo)、半徑熟練地寫出圓的標(biāo)準(zhǔn)方程,能從圓的標(biāo)準(zhǔn)方程中熟練地求出圓心坐標(biāo)和半徑,掌握?qǐng)A的一般方程:,知道該方程表示圓的充要條件并正確地進(jìn)行一般方程和標(biāo)準(zhǔn)方程的互化,能根據(jù)條件,用待定系數(shù)法求出圓的方程,理解圓的參數(shù)方程(θ為參數(shù)),明確各字母的意義,掌握直線與圓的位置關(guān)系的判定方法.

試題詳情

3.   理解“曲線的方程”、“方程的曲線”的意義,了解解析幾何的基本思想,掌握求曲線的方程的方法.

試題詳情

2.能正確畫出二元一次不等式(組)表示的平面區(qū)域,知道線性規(guī)劃的意義,知道線性約束條件、線性目標(biāo)函數(shù)、可行解、可行域、最優(yōu)解等基本概念,能正確地利用圖解法解決線性規(guī)劃問題,并用之解決簡(jiǎn)單的實(shí)際問題,了解線性規(guī)劃方法在數(shù)學(xué)方面的應(yīng)用;會(huì)用線性規(guī)劃方法解決一些實(shí)際問題.

試題詳情

高考中解析幾何試題一般共有4題(2個(gè)選擇題, 1個(gè)填空題, 1個(gè)解答題),共計(jì)30分左右,考查的知識(shí)點(diǎn)約為20個(gè)左右。 其命題一般緊扣課本,突出重點(diǎn),全面考查。選擇題和填空題考查直線、圓、圓錐曲線、參數(shù)方程和極坐標(biāo)系中的基礎(chǔ)知識(shí)。解答題重點(diǎn)考查圓錐曲線中的重要知識(shí)點(diǎn),通過知識(shí)的重組與鏈接,使知識(shí)形成網(wǎng)絡(luò),著重考查直線與圓錐曲線的位置關(guān)系,求解有時(shí)還要用到平幾的基本知識(shí)和向量的基本方法,這一點(diǎn)值得強(qiáng)化。

1.    能正確導(dǎo)出由一點(diǎn)和斜率確定的直線的點(diǎn)斜式方程;從直線的點(diǎn)斜式方程出發(fā)推導(dǎo)出直線方程的其他形式,斜截式、兩點(diǎn)式、截距式;能根據(jù)已知條件,熟練地選擇恰當(dāng)?shù)姆匠绦问綄懗鲋本的方程,熟練地進(jìn)行直線方程的不同形式之間的轉(zhuǎn)化,能利用直線的方程來研究與直線有關(guān)的問題了.

試題詳情

例1、⑴已知水平平面內(nèi)的兩條相交直線a, b所成的角為,如果將角的平分線繞著其頂點(diǎn),在豎直平面內(nèi)作上下轉(zhuǎn)動(dòng), 轉(zhuǎn)動(dòng)到離開水平位值的處,且與兩條直線a,b都成角,則的大小關(guān)系是                 (  )

A.          B. >< 

C. >             D. <

⑵已知異面直線a,b所成的角為70,則過空間一定點(diǎn)O,與兩條異面直線a,b都成60角的直線有                              (  )條.

A. 1     B. 2     C. 3      D. 4

⑶異面直線a,b所成的角為,空間中有一定點(diǎn)O,過點(diǎn)O有3條直線與a,b所成角都是60,則的取值可能是      (  ).

A. 30    B. 50    C. 60    D. 90

分析與解答:

⑴ 如圖1所示,易知直線上點(diǎn)A在平面上的射影是ι上的點(diǎn)B,過點(diǎn)B作BC⊥b,

則AC⊥b.  在Rt△OBC和Rt△OAC中,tg=,tg=.顯然,AC>BC,

∴tan> tan,又(0,,∴ .故選C.        

B
 

A
 
O
 
                                  ι

            

(2)D(3)C

圖1

例2、已知PA⊥矩形ABCD所在平面,M、N分別是AB、PC的中點(diǎn).

  (1)求證:MN⊥AB;

  (2)設(shè)平面PDC與平面ABCD所成的二面角為銳角θ,問能否確定θ使直線MN是異

面直線AB與PC的公垂線?若能,求出相應(yīng)θ的值;若不能,說明理由.

解:(1)∵PA⊥矩形ABCD,BC⊥AB,∴PB⊥BC,PA⊥AC,即△PBC和△PAC都是

以PC為斜邊的直角三角形,,又M為AB的中點(diǎn),∴MN⊥AB.

(2)∵AD⊥CD,PD⊥CD.∴∠PDA為所求二面角的平面角,即∠PDA=θ.

設(shè)AB=a,PA=b,AD=d,則, 

設(shè)PM=CM則由N為PC的中點(diǎn),∴MN⊥PC由(1)可知MN⊥AB,

∴MN為PC與AB的公垂線,這時(shí)PA=AD,∴θ=45°。

  例3、如圖,直三棱柱ABC-A1B1C1的底面ABC為等腰直角三角形,∠ACB=900,AC=1,C點(diǎn)到AB1的距離為CE=,D為AB的中點(diǎn).

(1)求證:AB1⊥平面CED;

(2)求異面直線AB1與CD之間的距離;

(3)求二面角B1-AC-B的平面角.

解:(1)∵D是AB中點(diǎn),△ABC為等腰直角三角形,

∠ABC=900,∴CD⊥AB又AA1⊥平面ABC,∴CD⊥AA1.

∴CD⊥平面A1B1BA  ∴CD⊥AB1,又CE⊥AB1

 ∴AB1⊥平面CDE;

(2)由CD⊥平面A1B1BA  ∴CD⊥DE

∵AB1⊥平面CDE  ∴DE⊥AB1,

∴DE是異面直線AB1與CD的公垂線段

∵CE=,AC=1 , ∴CD=;

(3)連結(jié)B1C,易證B1C⊥AC,又BC⊥AC ,

∴∠B1CB是二面角B1-AC-B的平面角.

在Rt△CEA中,CE=,BC=AC=1,∴∠B1AC=600

,  ∴,

 , ∴.

說明:作出公垂線段和二面角的平面角是正確解題的前提, 當(dāng)然, 準(zhǔn)確地作出應(yīng)當(dāng)有嚴(yán)格的邏輯推理作為基石.

例4、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在線段SA上取一點(diǎn)E(不含端點(diǎn))使EC=AC,截面CDE與SB交于點(diǎn)F。

(1)求證:四邊形EFCD為直角梯形;

(2)求二面角B-EF-C的平面角的正切值;

(3)設(shè)SB的中點(diǎn)為M,當(dāng)的值是多少時(shí),能使△DMC

為直角三角形?請(qǐng)給出證明.

解:(1)∵ CDABAB平面SABCD∥平面SAB

EFCD∩面SAB=EF,

CDEF

平面SAD,∴

為直角梯形 

(2)平面平面SAD

即為二面角D-EF-C的平面角

為等腰三角形,  

(3)當(dāng)時(shí),為直角三角形 .

 ,

平面平面.

中,SB中點(diǎn),.

平面平面 為直角三角形。

例5.如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,AC與BD交于點(diǎn)E,CB與CB1交于點(diǎn)F.

  (I)求證:A1C⊥平BDC1;

(II)求二面角B-EF-C的大小(結(jié)果用反三角函數(shù)值表示).

解法一:(Ⅰ)∵A1A⊥底面ABCD,則AC是A1C在底面ABCD的射影.

∵AC⊥BD.∴A1C⊥BD.

同理A1C⊥DC1,又BD∩DC1=D,

∴A1C⊥平面BDC1.

(Ⅱ)取EF的中點(diǎn)H,連結(jié)BH、CH,

又E、F分別是AC、B1C的中點(diǎn),

解法二:(Ⅰ)以點(diǎn)C為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則C(0,0,0).

D(1,0,0),B(0,1,0),A1(1,1,1),C1(0,0,1),D1(1,0,1)

 

(Ⅱ)同(I)可證,BD1⊥平面AB1C.

試題詳情

3.有七種距離,即點(diǎn)與點(diǎn)、點(diǎn)到直線、兩條平行直線、兩條異面直線、點(diǎn)到平面、平行于平面的直線與該平面、兩個(gè)平行平面之間的距離,其中點(diǎn)與點(diǎn)、點(diǎn)與直線、點(diǎn)到平面的距離是基礎(chǔ),求其它幾種距離一般化歸為求這三種距離,點(diǎn)到平面的距離有時(shí)用“體積法”來求。

試題詳情

2.三種空間角,即異面直線所成角、直線與平面所成角。平面與平面所成二面角。它們的求法一般化歸為求兩條相交直線的夾角,通!熬線角抓平移,線面角找射影,面面角作平面角”而達(dá)到化歸目的,有時(shí)二面角大小出通過cos=來求。

試題詳情

1.  須明確《直線、平面、簡(jiǎn)單幾何體》中所述的兩個(gè)平面是指兩個(gè)不重合的平面。

試題詳情

8.球的表面積及體積公式

 S球表=4πR2          V=πR3

⑴球的體積公式可以這樣來考慮:我們把球面分成若干個(gè)邊是曲線的小“曲邊三角形”;以球心為頂點(diǎn),以這些小曲邊三角形的頂點(diǎn)為底面三角形的頂點(diǎn),得到若干個(gè)小三棱錐,所有這些小三棱錐的體積和可以看作是球體積的近似值.當(dāng)小三棱錐的個(gè)數(shù)無限增加,且所有這些小三棱錐的底面積無限變小時(shí),小三棱錐的體積和就變成球體積,同時(shí)小三棱錐底面面積的和就變成球面面積,小三棱錐高變成球半徑.由于第n個(gè)小三棱錐的體積=Snhn(Sn為該小三棱錐的底面積,hn為小三棱錐高),所以VS球面·R·4πR2·RπR3.

   ⑵球與其它幾何體的切接問題,要仔細(xì)觀察、分析、弄清相關(guān)元素的位置關(guān)系和數(shù)量關(guān)系,選擇最佳角度作出截面,以使空間問題平面化。

試題詳情


同步練習(xí)冊(cè)答案