∴ 當x=-1時, f (x)取極大值. …………………………6分
(2) ∵y=f (x)在區(qū)間[-1,2]上是單調(diào)減函數(shù),
∴f ′(x)=x2+2ax-b≤0在區(qū)間[-1,2]上恒成立.
根據(jù)二次函數(shù)圖象可知f ′(-1)≤0且f ′(2)≤0,即:
∴ f (x)=x3-x2-3x。
f ′(x)=x2-2x-3=(x+1)(x-3).
令f ′(x)=0,得x1=-1,x2=3,
由此可知:
x
(-∞,-1)
-1
(-1, 3)
3
(3, +∞)
f ’(x)
+
0
-
0
+
f (x)
ㄊ
f (x)極大5/3
ㄋ
f (x) 極小
ㄊ
∴ 解得:…………………………3分
∴ 由題意可知:f ′(1)=-4且f (1)= -,
(1)若y=f (x)圖象上的點(1,-)處的切線斜率為-4,求y=f (x)的極大值;
(2)若y=f (x)在區(qū)間[-1,2]上是單調(diào)減函數(shù),求a + b的最小值.
【標準答案】
解:(1)∵f ′(x)=x2+2ax-b ,
11. 已知函數(shù)f (x)=x3+ ax2-bx (a, b∈R) .
說明:本題在函數(shù)、導數(shù)、方程的交匯處命題,具有較強的預測性,而且設(shè)問的方式具有較大的開放性,情景新穎.解題的關(guān)鍵是:深刻理解函數(shù)“拐點”的定義和函數(shù)圖像的對稱中心的意義。其本質(zhì)是:任何一個三次函數(shù)都有拐點;任何一個三次函數(shù)都有對稱中心;且任何一個三次函數(shù)的拐點就是它的對稱中心,即。
(3)或?qū)懗鲆粋具體的函數(shù),如或!12分
一般地,三次函數(shù)的“拐點”是,它就是的對稱中心!10分
(或者:任何一個三次函數(shù)都有拐點;任何一個三次函數(shù)都有對稱中心;任何一個三次函數(shù)平移后可以是奇函數(shù)………)都可以給分
由定義(2)知:關(guān)于點對稱!8分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com