定義在上的任意函數(shù)f(x)都可以表示成一個奇函數(shù)g(x)和一個偶函數(shù)h(x)之和.如果f(x)=lg(10x+1),其中x∈,那么A.g(x)=x,h(x)=lg(10x+10-x+2) 查看更多

 

題目列表(包括答案和解析)

定義在(-∞,+∞)上的任意函數(shù)f(x)都可以表示成一個奇函數(shù)g(x)和一個偶函數(shù)h(x)之和,如果f(x)=lg(10x+1),其中x∈(-∞,+∞),那么(    )

A. g(x)=x,h(x)=lg(10x+10x+2)

B. g(x)=[lg(10x+1)+x],h(x)= [lg(10x+1)-x

C. g(x)=,h(x)=lg(10x+1)-

D. g(x)=-,h(x)=lg(10x+1)+

查看答案和解析>>

定義在R上的任意函數(shù)f (x)都可以表示成一個奇函數(shù)g (x)和一個偶函數(shù)h (x)之和,如果f (x)=lg(10x+1),x∈R.那么

A.g (x)=x,h (x)=lg(10x+10-x+1)

B.g (x)=,h (x)=

C.g (x)=,h (x)=lg(10x+1)-

D.g (x)=-,h (x)=

 

查看答案和解析>>

定義在R上的任意函數(shù)f (x)都可以表示成一個奇函數(shù)g (x)和一個偶函數(shù)h (x)之和,如果f (x)=lg(10x+1),x∈R.那么

A.g (x)=x,h (x)=lg(10x+10-x+1)
B.g (x)=,h (x)=
C.g (x)=,h (x)=lg(10x+1)-
D.g (x)=-,h (x)=

查看答案和解析>>

定義在R上的任意函數(shù)f (x)都可以表示成一個奇函數(shù)g (x)和一個偶函數(shù)h (x)之和,如果f (x)=lg(10x+1),x∈R.那么
A.g (x)=x,h (x)=lg(10x+10-x+1)
B.g (x)=,h (x)=
C.g (x)=,h (x)=lg(10x+1)-
D.g (x)=-,h (x)=

查看答案和解析>>

定義在(¥,+¥)上的任意函數(shù)f(x)都可以表示成一個偶函數(shù)g(x)和一個奇函數(shù)h(x)的和,如果xÎ(¥,+¥),求g(x)h(x)

查看答案和解析>>

難點磁場

解:(1)由6ec8aac122bd4f6e>0,且2-x≠0得F(x)的定義域為(-1,1),設(shè)-1<x1x2<1,則

F(x2)-F(x1)=(6ec8aac122bd4f6e)+(6ec8aac122bd4f6e)

6ec8aac122bd4f6e,

x2x1>0,2-x1>0,2-x2>0,∴上式第2項中對數(shù)的真數(shù)大于1.

因此F(x2)-F(x1)>0,F(x2)>F(x1),∴F(x)在(-1,1)上是增函數(shù).

(2)證明:由y=f(x)=6ec8aac122bd4f6e得:2y=6ec8aac122bd4f6e,

f1(x)=6ec8aac122bd4f6e,∵f(x)的值域為R,∴f-1(x)的定義域為R.

n≥3時,f-1(n)>6ec8aac122bd4f6e.

用數(shù)學(xué)歸納法易證2n>2n+1(n≥3),證略.

(3)證明:∵F(0)=6ec8aac122bd4f6e,∴F1(6ec8aac122bd4f6e)=0,∴x=6ec8aac122bd4f6eF1(x)=0的一個根.假設(shè)F1(x)=0還有一個解x0(x06ec8aac122bd4f6e),則F-1(x0)=0,于是F(0)=x0(x06ec8aac122bd4f6e).這是不可能的,故F-1(x)=0有惟一解.

殲滅難點訓(xùn)練

一、1.解析:由題意:g(x)+h(x)=lg(10x+1)                                                                      ①

g(-x)+h(-x)=lg(10x+1).即-g(x)+h(x)=lg(10x+1)                                             ②

由①②得:g(x)=6ec8aac122bd4f6e,h(x)=lg(10x+1)-6ec8aac122bd4f6e.

答案:C

2.解析:當a>1時,函數(shù)y=logax的圖象只能在A和C中選,又a>1時,y=(1-a)x為減函數(shù).

答案:B

二、3.解析:容易求得f- 1(x)=6ec8aac122bd4f6e,從而:

f1(x-1)=6ec8aac122bd4f6e

答案:6ec8aac122bd4f6e

4.解析:由題意,5分鐘后,y1=aent,y2=aaent,y1=y2.∴n=6ec8aac122bd4f6eln2.設(shè)再過t分鐘桶1中的水只有6ec8aac122bd4f6e,則y1=aen(5+t)=6ec8aac122bd4f6e,解得t=10.

答案:10

三、5.解:(1)設(shè)點Q的坐標為(x′,y′),則x′=x-2a,y′=-y.即x=x′+2a,y=-y′.

∵點P(x,y)在函數(shù)y=loga(x-3a)的圖象上,∴-y′=loga(x′+2a-3a),即y′=loga6ec8aac122bd4f6e,∴g(x)=loga6ec8aac122bd4f6e.

(2)由題意得x-3a=(a+2)-3a=-2a+2>0;6ec8aac122bd4f6e=6ec8aac122bd4f6e>0,又a>0且a≠1,∴0<a<1,∵|f(x)-g(x)|=|loga(x-3a)-loga6ec8aac122bd4f6e|=|loga(x2-4ax+3a2)|?|f(x)-g(x)|≤1,∴-1≤loga(x2-4ax+3a2)≤1,∵0<a<1,∴a+2>2a.f(x)=x2-4ax+3a2在[a+2,a+3]上為減函數(shù),∴μ(x)=loga(x2-4ax+3a2)在[a+2,a+3]上為減函數(shù),從而[μ(x)]max=μ(a+2)=loga(4-4a),[μ(x)]min=μ(a+3)=loga(9-6a),于是所求問題轉(zhuǎn)化為求不等式組6ec8aac122bd4f6e的解.

由loga(9-6a)≥-1解得0<a6ec8aac122bd4f6e,由loga(4-4a)≤1解得0<a6ec8aac122bd4f6e,

∴所求a的取值范圍是0<a6ec8aac122bd4f6e.

6.解:f(x1)+f(x2)=logax1+logax2=logax1x2,

x1,x2∈(0,+∞),x1x2≤(6ec8aac122bd4f6e)2(當且僅當x1=x2時取“=”號),

a>1時,有l(wèi)ogax1x2≤loga(6ec8aac122bd4f6e)2,

6ec8aac122bd4f6elogax1x2≤loga(6ec8aac122bd4f6e),6ec8aac122bd4f6e(logax1+logax2)≤loga6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6ef(x1)+f(x2)]≤f(6ec8aac122bd4f6e)(當且僅當x1=x2時取“=”號)

當0<a<1時,有l(wèi)ogax1x2≥loga(6ec8aac122bd4f6e)2,

6ec8aac122bd4f6e(logax1+logax2)≥loga6ec8aac122bd4f6e,即6ec8aac122bd4f6ef(x1)+f(x2)]≥f(6ec8aac122bd4f6e)(當且僅當x1=x2時取“=”號).

7.解:由已知等式得:loga2x+loga2y=(1+2logax)+(1+2logay),即(logax-1)2+(logay-1)2=4,令u=logax,v=logay,k=logaxy,則(u-1)2+(v-1)2=4(uv≥0),k=u+v.在直角坐標系uOv內(nèi),圓弧(u-1)2+(v-1)2=4(uv≥0)與平行直線系v=-u+k有公共點,分兩類討論.

(1)當u≥0,v≥0時,即a>1時,結(jié)合判別式法與代點法得1+6ec8aac122bd4f6ek≤2(1+6ec8aac122bd4f6e);

(2)當u≤0,v≤0,即0<a<1時,同理得到2(1-6ec8aac122bd4f6e)≤k≤1-6ec8aac122bd4f6e.x綜上,當a>1時,logaxy的最大值為2+26ec8aac122bd4f6e,最小值為1+6ec8aac122bd4f6e;當0<a<1時,logaxy的最大值為1-6ec8aac122bd4f6e,最小值為2-26ec8aac122bd4f6e.

8.解:∵2(6ec8aac122bd4f6ex)2+9(6ec8aac122bd4f6ex)+9≤0

∴(26ec8aac122bd4f6ex+3)( 6ec8aac122bd4f6ex+3)≤0.

∴-3≤6ec8aac122bd4f6ex≤-6ec8aac122bd4f6e.

6ec8aac122bd4f6e (6ec8aac122bd4f6e)36ec8aac122bd4f6ex6ec8aac122bd4f6e(6ec8aac122bd4f6e)6ec8aac122bd4f6e?

∴(6ec8aac122bd4f6e)6ec8aac122bd4f6ex≤(6ec8aac122bd4f6e)3,∴26ec8aac122bd4f6ex≤8

M={x|x∈[26ec8aac122bd4f6e,8]}

f(x)=(log2x-1)(log2x-3)=log22x-4log2x+3=(log2x-2)2-1.

∵26ec8aac122bd4f6ex≤8,∴6ec8aac122bd4f6e≤log2x≤3

∴當log2x=2,即x=4時ymin=-1;當log2x=3,即x=8時,ymax=0.

 

 

 


同步練習(xí)冊答案