解得.所以選B.感悟:注意純虛數(shù)的虛部不等于零.這是解題易錯點(diǎn).對復(fù)數(shù)的有關(guān)概念:實(shí)數(shù).純虛數(shù).虛數(shù).共軛復(fù)數(shù).復(fù)數(shù)相等這些概念的考查一直是高考對復(fù)數(shù)考查的重點(diǎn)之一.只要熟練掌握這些概念的本質(zhì)特征.準(zhǔn)確列式.此類問題便可迎刃而解.考查方向二:考查復(fù)數(shù)有關(guān)運(yùn)算 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)y=x²-3x+c的圖像與x恰有兩個公共點(diǎn),則c=

(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1

【解析】若函數(shù)的圖象與軸恰有兩個公共點(diǎn),則說明函數(shù)的兩個極值中有一個為0,函數(shù)的導(dǎo)數(shù)為,令,解得,可知當(dāng)極大值為,極小值為.由,解得,由,解得,所以,選A.

 

查看答案和解析>>

 函數(shù)y=x2(x>0)的圖像在點(diǎn)(ak,ak2)處的切線與x軸交點(diǎn)的橫坐標(biāo)為ak+1,k為正整數(shù),a1=16,則a1+a3+a5=____▲_____

在點(diǎn)(ak,ak2)處的切線方程為:當(dāng)時(shí),解得

所以。

 

查看答案和解析>>

下列說法正確的是

A.由y=2x解得x=,所以函數(shù)y=2x的反函數(shù)是x=

B.由y=2x解得x=,然后在x=中將x、y交換,得到y=,則函數(shù)y=不是y=2x的反函數(shù)

C.有些函數(shù)沒有反函數(shù)

D.因?yàn)?I>x=y=都可以稱為y=2x的反函數(shù),所以在同一坐標(biāo)系中函數(shù)x=y=的圖象表示同一條直線

查看答案和解析>>

設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

,得,

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由條件得消去并整理得  ②

,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由P在橢圓上,有

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

,,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

已知曲線C:(m∈R)

(1)   若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;

(2)     設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線。

【解析】(1)曲線C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是

(2)當(dāng)m=4時(shí),曲線C的方程為,點(diǎn)A,B的坐標(biāo)分別為

,得

因?yàn)橹本與曲線C交于不同的兩點(diǎn),所以

設(shè)點(diǎn)M,N的坐標(biāo)分別為,則

直線BM的方程為,點(diǎn)G的坐標(biāo)為

因?yàn)橹本AN和直線AG的斜率分別為

所以

,故A,G,N三點(diǎn)共線。

 

查看答案和解析>>

一、選擇題:

1.C.提示:

2.A.提示:直接利用“更相減損術(shù)”原理逐步運(yùn)算即可.

3.B.提示:為實(shí)數(shù),所以

4.C.提示:這是一個條件分支結(jié)構(gòu),實(shí)質(zhì)是分段函數(shù)求最值問題,將函數(shù)定義域分為三段討論即可求解.分段函數(shù)為:

當(dāng)時(shí),解得,不合題意;當(dāng)時(shí),解得,不合題意;

當(dāng)時(shí),解得,符合題意,所以當(dāng)輸入的值為3時(shí),輸出的值為8.

5.B.提示:由為純虛數(shù)得:.由,解得:.因?yàn)?sub>為第四象限角,所以,則,選B.

6.C.提示:此算法的功能為求解當(dāng)取到第一個大于或等于的值時(shí),的表達(dá)式中最后一項(xiàng)的值.

.所以時(shí),

此時(shí)

7.C.提示:令,則,∴

8.D.提示:框圖的功能是尋找滿足的最小的自然數(shù),可解得,,

所以,則輸出的值為

9.D.提示:,此復(fù)數(shù)的對應(yīng)點(diǎn)為,因?yàn)?sub>,所以,所以此復(fù)數(shù)的對應(yīng)點(diǎn)在第四象限.

10.B.提示:設(shè)工序c所需工時(shí)數(shù)為x天,由題設(shè)關(guān)鍵路線是aceg.需工時(shí)1+x+4+1=10.∴x=4,即工序c所需工時(shí)數(shù)為4天.

11.A.提示:,,……,所以

12.A.提示:根據(jù)題意可得:,解得.所以點(diǎn)落在以為端點(diǎn)的線段上,如右圖.表示線段上的點(diǎn)到的距離之和,顯然當(dāng)共線時(shí),和最小,此時(shí),點(diǎn)是直線的交點(diǎn),由圖知,交點(diǎn)為,所以

,當(dāng)時(shí),

二、填空題

13.,.提示:這是一個當(dāng)型循環(huán)結(jié)構(gòu),由條件可知判斷的條件是:;處理框所填的是:

14.21分鐘.提示:根據(jù)流程,可以先燒水,泡面,在燒水泡面的11分鐘里,可以同時(shí)洗臉?biāo)⒀篮蜕暇W(wǎng)查資料,這樣最短可用去11分鐘,然后吃飯用10分鐘,這樣他做完這些事情用的最短時(shí)間為21分鐘.

15..提示:設(shè)方程的實(shí)根為,代入方程得,可化為,所以有,解得

所以,所以其共軛復(fù)數(shù)為

16.4.提示:從圖中可以看出,一件成品必須經(jīng)過的工序次數(shù)是粗加工、檢驗(yàn)、精加工或返修加工、檢驗(yàn),至少四次.

三、解答題:

17.解:由題知平行四邊形三頂點(diǎn)坐標(biāo)為,

設(shè)D點(diǎn)的坐標(biāo)為

因?yàn)?sub>,得,

,即

所以,則對應(yīng)的復(fù)數(shù)為

⑵因?yàn)?sub>,所以復(fù)數(shù)的對應(yīng)點(diǎn)Z在以為圓心,以2為半徑的圓上,

的最大值為

18.解:

19.解:因?yàn)?sub>,,

所以,若,則,

消去可得:,

可化為,則當(dāng)時(shí),取最小值;當(dāng)時(shí),取最大值7.

所以

20.解:此程序的功能是求解函數(shù)的函數(shù)值.

根據(jù)題意知

則當(dāng)時(shí),;當(dāng)時(shí),;

所以,可以化為,

當(dāng)時(shí),時(shí),有最小值;當(dāng)時(shí),則時(shí),有最小值

因?yàn)?sub>,所以所得值中的最小值為1.

21.解:,

所以.因?yàn)?sub>,所以,

所以,則,即的模的取值范圍為

22.解:(1)算法的功能為:

(2)程序框圖為:

⑶程序語句為:

;

   

        ;

    ;

   

w.w.w.k.s.5.u.c.o.m

 


同步練習(xí)冊答案