解法一:將雙曲線方程化為標(biāo)準(zhǔn)形式為x2-=1.其焦點在x軸上.且a=1.b=.故其漸近線方程為y=±x=±x.所以應(yīng)選C. 查看更多

 

題目列表(包括答案和解析)

⊙O1和⊙O2的極坐標(biāo)方程分別為,

⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

⑵求經(jīng)過⊙O1,⊙O2交點的直線的直角坐標(biāo)方程.

【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡單的圓冤啊位置關(guān)系的運用

(1)中,借助于公式,將極坐標(biāo)方程化為普通方程即可。

(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.

(I),,由.所以

為⊙O1的直角坐標(biāo)方程.

同理為⊙O2的直角坐標(biāo)方程.

(II)解法一:由解得,

即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標(biāo)方程為y=-x.

解法二: 由,兩式相減得-4x-4y=0,即過交點的直線的直角坐標(biāo)方程為y=-x

 

查看答案和解析>>

已知圓C:x2+y2-4x+6y+4=0.
(1)將圓C的方程化為標(biāo)準(zhǔn)方程并指出圓心C的坐標(biāo)以及半徑的大;
(2)過點P(-1,1)引圓C的切線,切點為A,求切線長|PA|;
(3)求過點P(-1,1)的圓C的切線方程.

查看答案和解析>>

下列四個命題:

① 使用抽簽法,每個個體被抽中的機會相等;

② 將十進(jìn)制數(shù)化為二進(jìn)制數(shù)為;

③ 已知一個線性回歸方程是,則變量之間具有正相關(guān)關(guān)系;

④ 將一組數(shù)據(jù)中的每個數(shù)都加上或減去同一個數(shù)后,方差恒不變.

其中真命題的個數(shù)是(    )

A.1                B.2              C.3             D.4

 

查看答案和解析>>

已知橢圓C:數(shù)學(xué)公式,直線l:y=ax+b(a,b∈R)
(1)請你給出a,b的一組值,使直線l和橢圓C相交
(2)直線l和橢圓C相交時,a,b應(yīng)滿足什么關(guān)系?
(3)若a+b=1,試判斷直線l和橢圓C的位置關(guān)系;
(4)請你在第(3)問的基礎(chǔ)上添加一個合適的條件,求出直線l的方程,
(5)先將試題中的橢圓方程改為雙曲線方程數(shù)學(xué)公式,或改為拋物線方程y2=4x,再在第(4)問添加的條件中選擇一個,求出直線l的方程.

查看答案和解析>>

已知圓C:x2+y2-4x+6y+4=0.
(1)將圓C的方程化為標(biāo)準(zhǔn)方程并指出圓心C的坐標(biāo)以及半徑的大;
(2)過點P(-1,1)引圓C的切線,切點為A,求切線長|PA|;
(3)求過點P(-1,1)的圓C的切線方程.

查看答案和解析>>


同步練習(xí)冊答案