點(diǎn)在橢圓上.且 查看更多

 

題目列表(包括答案和解析)

點(diǎn)在橢圓+上,為焦點(diǎn) 且,則的面積為(   )

A.             B.               C.            D.

 

查看答案和解析>>

點(diǎn)在橢圓+上,為焦點(diǎn) 且,則的面積為(   )

A. B. C. D.

查看答案和解析>>

點(diǎn)在橢圓+上,為焦點(diǎn) 且,則的面積為(   )
A.B.C.D.

查看答案和解析>>

點(diǎn)在橢圓+上,為焦點(diǎn) 且,則的面積為(    )

A.          B.             C.          D.

查看答案和解析>>

若點(diǎn)在橢圓上,F(xiàn)1,F(xiàn)2分別是該橢圓的兩焦點(diǎn),且,則的面積是(    )

A.1       B.2        C.      D.

 

查看答案和解析>>

一、選擇題(4′×10=40分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空題(4′×4=16分)

11.       12.          13.       14.

三、解答題(共44分)

15.①解:原不等式可化為:  ………………………2′

   作根軸圖:

 

 

 

                                                      ………………………4′

  

可得原不等式的解集為:  ………………………6′

②解:直線(xiàn)的斜率  ………………………2′

∵直線(xiàn)與該直線(xiàn)垂直

   則的方程為: ………………………4′

為所求………………………6′

16.解:∵  則,………………………1′

∴有………………………3′

        ………………………4′

     ………………………5′

     

當(dāng)且僅當(dāng):………………………5′

       亦:時(shí)取等號(hào)

所以:當(dāng)時(shí),………………………7′

17.解:將代入中變形整理得:

………………………2′

首先………………………3′

設(shè)   

由題意得:

解得:(舍去)………………………6′

由弦長(zhǎng)公式得:………………………8′

18.解①設(shè)雙曲線(xiàn)的實(shí)半軸,虛半軸分別為,

則有:   ∴………………………1′

于是可設(shè)雙曲線(xiàn)方程為:  ①或 ②………………………3′

將點(diǎn)代入①求得:

將點(diǎn)代入②求得: (舍去) ………………………4′

,

∴雙曲線(xiàn)的方程為:………………………5′

②由①解得:,,,焦點(diǎn)在軸上………………………6′

∴雙曲線(xiàn)的準(zhǔn)線(xiàn)方程為:………………………7′

漸近線(xiàn)方程為: ………………………8′

19.解:①設(shè)為橢圓的半焦距,則,

   ∵  ∴  ∴………………………1′

代入,可求得

  ∵  ∴

  又、………………………3′

,

………………………5′

從而

∴離心率………………………6′

②由拋物線(xiàn)的通徑

得拋物線(xiàn)方程為,其焦點(diǎn)為………………………7′

∴橢圓的左焦點(diǎn)

由①解得:

………………………8′

∴該橢圓方程為:………………………9′

③      

 

 


同步練習(xí)冊(cè)答案