題目列表(包括答案和解析)
(本題滿分12分) 為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
|
喜愛打籃球 |
不喜愛打籃球 |
合計 |
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合計 |
30 |
20 |
50 |
(1)用分層抽樣的方法在喜歡打藍(lán)球的學(xué)生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女生的概率.
(3)為了研究喜歡打藍(lán)球是否與性別有關(guān),計算出,你有多大的把握認(rèn)為是否喜歡打藍(lán)球與性別有關(guān)?
下面的臨界值表供參考:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本題滿分12分)
對某校高二年級學(xué)生參加社會實(shí)踐活動次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社會實(shí)踐活動的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 |
頻數(shù) |
頻率 |
10 |
0.25 |
|
26 |
n |
|
|
m |
P |
|
1 |
0.025 |
合計 |
M |
1 |
(Ⅰ)求出表中M,P及圖中的值;
(Ⅱ)在所取樣本中,從參加社會實(shí)踐活動的次數(shù)不少于20次的學(xué)生中任選2人,求恰有一人參加社會實(shí)踐活動次數(shù)在區(qū)間內(nèi)的概率.
一、選擇題
1.C 2.D 3.B 4.B 5.C 6.D 7. B 8.C 9.D 10.B11.A 12.B
二、填空題
13. 14.- 15.[-1,2] 16.①④
三、解答題
17.解:(Ⅰ)由,,得.
∴.
于是.
(Ⅱ)由,得.
又∵,
∴.
由,得
∴.
18.(Ⅰ)證明:在直四棱柱中,
連結(jié),
,
四邊形是正方形.
.
又,,
平面,
平面,
.
平面,
且,
平面,
又平面,
.
(Ⅱ)連結(jié),連結(jié),
設(shè),
,連結(jié),
平面平面,
要使平面,
須使,
又是的中點(diǎn).
是的中點(diǎn).
又易知,
.
即是的中點(diǎn).
綜上所述,當(dāng)是的中點(diǎn)時,可使平面.
19.解:(Ⅰ)
更 愛 好 體 育
更 愛 好 文 娛
合 計
男 生
15
10
25
女 生
5
10
15
合 計
20
20
40
…………………………………5分
(Ⅱ)恰好是一男一女的概率是:
(Ⅲ)
而
∴有85%的把握可以認(rèn)為性別與是否更喜歡體育有關(guān)系。
20.解:(Ⅰ)設(shè)等比數(shù)列的公比為
由,得,從而,,.
因?yàn)?sub>成等差數(shù)列,所以,
即,.
所以.故.
(Ⅱ)
21.解:(Ⅰ),由已知,
即解得
,,,.
(Ⅱ)令,即,
,或.
又在區(qū)間上恒成立,.
22.解:(Ⅰ)設(shè)橢圓的半焦距為,依題意
,所求橢圓方程為.
(Ⅱ)設(shè),.
(1)當(dāng)軸時,.
(2)當(dāng)與軸不垂直時,
設(shè)直線的方程為.
由已知,得.
把代入橢圓方程,整理得,
,.
.
當(dāng)且僅當(dāng),即時等號成立.當(dāng)時,,
綜上所述.
當(dāng)最大時,面積取最大值.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com