(1)分析 的定義域, (2)求導(dǎo)數(shù) 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分)已知是直線上三點(diǎn),向量滿足:

,且函數(shù)定義域內(nèi)可導(dǎo)。

(1)求函數(shù)的解析式;

(2)若,證明:

 

(3)若不等式都恒成立,求實(shí)數(shù)

 

的取值范圍。

 

查看答案和解析>>

(本題滿分12分)已知是直線上三點(diǎn),向量滿足:
,且函數(shù)定義域內(nèi)可導(dǎo)。
(1)求函數(shù)的解析式;
(2)若,證明:;
(3)若不等式都恒成立,求實(shí)數(shù)
的取值范圍。

查看答案和解析>>

(本題滿分12分)已知是直線上三點(diǎn),向量滿足:
,且函數(shù)定義域內(nèi)可導(dǎo)。
(1)求函數(shù)的解析式;
(2)若,證明:
(3)若不等式都恒成立,求實(shí)數(shù)
的取值范圍。

查看答案和解析>>

(08年內(nèi)江市三模理)  (14分) 已知是直線上三點(diǎn),向量滿足:

,且函數(shù)定義域內(nèi)可導(dǎo)。

(1)求函數(shù)的解析式;

(2)若,證明:;

(3)若不等式都恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

已知函數(shù)處取得極值2.

⑴ 求函數(shù)的解析式;

⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

【解析】第一問中利用導(dǎo)數(shù)

又f(x)在x=1處取得極值2,所以

所以

第二問中,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分

⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                …………12分

.綜上所述,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時,f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是

 

查看答案和解析>>


同步練習(xí)冊答案