已知函數(shù)處取得極值2.

⑴ 求函數(shù)的解析式;

⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)m的取值范圍;

【解析】第一問中利用導數(shù)

又f(x)在x=1處取得極值2,所以,

所以

第二問中,

因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

解:⑴ 求導,又f(x)在x=1處取得極值2,所以,即,所以…………6分

⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

當f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                …………12分

.綜上所述,當時,f(x)在(m,2m+1)上單調(diào)遞增,當時,f(x)在(m,2m+1)上單調(diào)遞減;則實數(shù)m的取值范圍是

 

【答案】

       ⑵

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013屆度江西南昌二中高二下學期期末理科數(shù)學試卷(解析版) 題型:解答題

(本題12分)已知函數(shù)處取得極值.

(1) 求

(2 )設函數(shù),如果在開區(qū)間上存在極小值,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年貴州省畢節(jié)市高三上學期第三次月考理科數(shù)學試卷 題型:解答題

已知函數(shù)=處取得極值.

(1)求實數(shù)的值;

(2) 若關于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖南省高三第一次月考理科數(shù)學試卷 題型:解答題

(本小題滿分14分) 已知函數(shù)處取得極值。

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求證:對于區(qū)間上任意兩個自變量的值,都有;

(Ⅲ)若過點可作曲線的三條切線,求實數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣西柳鐵一中高三第三次月考文科數(shù)學試卷 題型:解答題

設函數(shù)為實數(shù)。

(Ⅰ)已知函數(shù)處取得極值,求的值;

(Ⅱ)已知不等式對任意都成立,求實數(shù)的取值范圍。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年甘肅省高三第二階段考試數(shù)學理卷 題型:解答題

(12分)已知函數(shù)處取得極值.

(Ⅰ)求實數(shù)的值;[來源:學+科+網(wǎng)]

(Ⅱ)若關于的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍.

 

查看答案和解析>>

同步練習冊答案