題目列表(包括答案和解析)
已知:定義在R上的函數(shù),其中a為常數(shù)。
。1)若,求:的圖象在點(diǎn)處的切線(xiàn)方程;
(2)若是函數(shù)的一個(gè)極值點(diǎn),求:實(shí)數(shù)a的值;
(3)若函數(shù)在區(qū)間上是增函數(shù),求:實(shí)數(shù)a的取值范圍。
已知函數(shù)的導(dǎo)函數(shù)滿(mǎn)足常數(shù)為方程
的實(shí)數(shù)根
(1)若函數(shù)的定義域?yàn)镮,對(duì)任意 存在使等式成立。 求證:方程不存在異于的實(shí)數(shù)根。
(2)求證:當(dāng)時(shí),總有成立。
已知函數(shù)(b,c,d為常數(shù)),當(dāng)時(shí),只有一個(gè)實(shí)數(shù)根;當(dāng)時(shí),有3個(gè)相異實(shí)根,現(xiàn)給出下列4個(gè)命題:
①函數(shù)有2個(gè)極值點(diǎn); ②和有一個(gè)相同的實(shí)根;
③函數(shù)有3個(gè)極值點(diǎn); ④和有一個(gè)相同的實(shí)根,其中是真命題的是 (填真命題的序號(hào))。
已知函數(shù)。(為常數(shù),)
(Ⅰ)若是函數(shù)的一個(gè)極值點(diǎn),求的值;
(Ⅱ)求證:當(dāng)時(shí),在上是增函數(shù);
(Ⅲ)若對(duì)任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍。
已知函數(shù),,其中為常數(shù), ,函數(shù)的圖象與坐標(biāo)軸交點(diǎn)處的切線(xiàn)為,函數(shù)的圖象與直線(xiàn)交點(diǎn)處的切線(xiàn)為,且。
(Ⅰ)若對(duì)任意的,不等式成立,求實(shí)數(shù)的取值范圍.
(Ⅱ)對(duì)于函數(shù)和公共定義域內(nèi)的任意實(shí)數(shù)。我們把 的值稱(chēng)為兩函數(shù)在處的偏差。求證:函數(shù)和在其公共定義域的所有偏差都大于2.
天津精通高考復(fù)讀學(xué)校數(shù)學(xué)教研組組長(zhǎng) 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替得
4.
5.,或
6.
7.略
8.
二、填空題:9.60; 10. 15:10:20 ; 11.; 12.;
13.0.74 ; 14. ①、;②、圓;③.
提示: 9.
10.,,
11.,
12.,,,
,
13.
14.略
三、解答題
15. 解:(1).
(2)設(shè)抽取件產(chǎn)品作檢驗(yàn),則,
,得:,即
故至少應(yīng)抽取8件產(chǎn)品才能滿(mǎn)足題意.
16. 解:由題意得,,原式可化為,
而
,
故原式=.
17. 解:(1)顯然,連接,∵,,
∴.由已知,∴,.
∵∽, ,
∴ 即 .
∴.
(2)
當(dāng)且僅當(dāng)時(shí),等號(hào)成立.此時(shí),即為的中點(diǎn).于是由,知平面,是其交線(xiàn),則過(guò)作
。
∴就是與平面所成的角.由已知得,,
∴, , .
(3) 設(shè)三棱錐的內(nèi)切球半徑為,則
∵,,,,,
∴.
18. 解: (1) ,
(2) ∵ ,
∴當(dāng)時(shí),
∴當(dāng)時(shí),,
∵,,,.
∴ 的最大值為或中的最大者.
∵
∴ 當(dāng)時(shí),有最大值為.
19.(1)解:∵函數(shù)的圖象過(guò)原點(diǎn),
∴即,
∴.
又函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱(chēng),
∴, .
(2)解:由題意有 即,
即,即.
∴數(shù)列{}是以1為首項(xiàng),1為公差的等差數(shù)列.
∴,即. ∴.
∴ ,,,.
(3)證明:當(dāng)時(shí),
故
20. (1)解:∵,又,
∴. 又∵
,且
∴ .
(2)解:由,,猜想
(3)證明:用數(shù)學(xué)歸納法證明:
①當(dāng)時(shí),,猜想正確;
②假設(shè)時(shí),猜想正確,即
1°若為正奇數(shù),則為正偶數(shù),為正整數(shù),
2°若為正偶數(shù),則為正整數(shù),
,又,且
所以
即當(dāng)時(shí),猜想也正確
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即,也就是 ,
4.先確定是哪兩個(gè)人的編號(hào)與座位號(hào)一致,有種情況,如編號(hào)為1的人坐1號(hào)座位,且編號(hào)為2的人坐2號(hào)座位有以下情形:
|