科目: 來源: 題型:
【題目】公元前世紀(jì)的畢達(dá)哥拉斯是最早研究“完全數(shù)”的人.完全數(shù)是一種特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.若從集合中隨機(jī)抽取兩個(gè)數(shù),則這兩個(gè)數(shù)中有完全數(shù)的概率是______.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線經(jīng)過點(diǎn),且與極軸所成的角為.
(1)求曲線的普通方程及直線的參數(shù)方程;
(2)設(shè)直線與曲線交于兩點(diǎn),若,求直線的普通方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】橢圓將圓的圓周分為四等份,且橢圓的離心率為.
(1)求橢圓的方程;
(2)若直線與橢圓交于不同的兩點(diǎn),且的中點(diǎn)為,線段的垂直平分線為,直線與軸交于點(diǎn),求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,平面,底面是直角梯形,,,且.點(diǎn)是線段上一點(diǎn),且.
(1)求證:平面平面.
(2)若,在線段上是否存在一點(diǎn),使得到平面的距離為?若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校的名高三學(xué)生參加了天一大聯(lián)考,為了分析此次聯(lián)考數(shù)學(xué)學(xué)科的情況,現(xiàn)隨機(jī)從中抽取名學(xué)生的數(shù)學(xué)成績(滿分:分),并繪制成如圖所示的莖葉圖.將成績低于分的稱為“不及格”,不低于分的稱為“優(yōu)秀”,其余的稱為“良好”.根據(jù)樣本的數(shù)字特征估計(jì)總體的情況.
(1)估算此次聯(lián)考該校高三學(xué)生的數(shù)學(xué)學(xué)科的平均成績.
(2)估算此次聯(lián)考該校高三學(xué)生數(shù)學(xué)成績“不及格”和“優(yōu)秀”的人數(shù)各是多少.
(3)在國家扶貧政策的倡導(dǎo)下,該地教育部門提出了教育扶貧活動(dòng),要求對(duì)此次數(shù)學(xué)成績“不及格”的學(xué)生分兩期進(jìn)行學(xué)業(yè)輔導(dǎo):一期由優(yōu)秀學(xué)生進(jìn)行一對(duì)一幫扶輔導(dǎo),二期由老師進(jìn)行集中輔導(dǎo).根據(jù)實(shí)踐總結(jié),優(yōu)秀學(xué)生進(jìn)行一對(duì)一輔導(dǎo)的轉(zhuǎn)化率為;老師集中輔導(dǎo)的轉(zhuǎn)化率為,試估算經(jīng)過兩期輔導(dǎo)后,該校高三學(xué)生中數(shù)學(xué)成績?nèi)匀徊患案竦娜藬?shù).
注:轉(zhuǎn)化率
查看答案和解析>>
科目: 來源: 題型:
【題目】公元前世紀(jì)的畢達(dá)哥拉斯是最早研究“完全數(shù)”的人.完全數(shù)是一種特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.若從集合中隨機(jī)抽取兩個(gè)數(shù),則這兩個(gè)數(shù)中有完全數(shù)的概率是______.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若,討論函數(shù)的單調(diào)性;
(2)設(shè),是否存在實(shí)數(shù),對(duì)任意,,,有恒成立?若存在,求出的范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,已知.
(1)令,求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足:.
①求數(shù)列的通項(xiàng)公式;
②是否存在正整數(shù),使得成立?若存在,求出所有的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com