相關(guān)習(xí)題
 0  266071  266079  266085  266089  266095  266097  266101  266107  266109  266115  266121  266125  266127  266131  266137  266139  266145  266149  266151  266155  266157  266161  266163  266165  266166  266167  266169  266170  266171  266173  266175  266179  266181  266185  266187  266191  266197  266199  266205  266209  266211  266215  266221  266227  266229  266235  266239  266241  266247  266251  266257  266265  266669 

科目: 來源: 題型:

【題目】《中國詩詞大會》(第二季)亮點頗多,十場比賽每場都有一首特別設(shè)計的開場詩詞在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《將進酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )

A. 288 B. 144 C. 720 D. 360

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1,an1nN*).(其中e為自然對數(shù)的底數(shù),e2.71828…

1)證明:an1>annN*);

2)設(shè)bn1an,是否存在實數(shù)M>0,使得b1b2bnM對任意nN*成立?若存在,求出M的一個值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知四邊形ABCD是正方形,AE平面ABCD,PDAE,PDAD2EA2,G,F,H分別為BEBP,PC的中點.

1)求證:平面ABE平面GHF

2)求直線GH與平面PBC所成的角θ的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

1)求函數(shù)的值域;

2)若不等式對任意恒成立,求實數(shù)的取值范圍;

3)證明:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列滿足,a11,a2,且[3+(-1n]an22an2[(-1n1]0,nN*,記T2n為數(shù)列{an}的前2n項和,數(shù)列{bn}是首項和公比都是2的等比數(shù)列,則使不等式·<1成立的最小整數(shù)n為(

A.7B.6C.5D.4

查看答案和解析>>

科目: 來源: 題型:

【題目】在等腰梯形ABCD中,已知ABADCD1BC2,將ABD沿直線BD翻折成ABD,如圖,則直線BACD所成角的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為坐標原點,在圓:.

1)求實數(shù)的值;

2)求過圓心且與直線平行的直線的方程;

3)過點作互相垂直的直線,,與圓交于兩點,與圓交于兩點,的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了解數(shù)學(xué)課外興趣小組的學(xué)習(xí)情況,從某次測試的成績中隨機抽取名學(xué)生的成績進行分析,得到如圖所示的頻率分布直方圖.

1)根據(jù)頻率分布直方圖估計本次測試成績的眾數(shù);

2)從成績不低于分的兩組學(xué)生中任選,求選出的兩人來自同一組的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】瑞士著名數(shù)學(xué)家歐拉在研究幾何時曾定義歐拉三角形,的三個歐拉點(頂點與垂心連線的中點)構(gòu)成的三角形稱為的歐拉三角形.如圖,的歐拉三角形(H的垂心).已知,,若在內(nèi)部隨機選取一點,則此點取自陰影部分的概率為________.

查看答案和解析>>

科目: 來源: 題型:

【題目】某大型工廠有6臺大型機器,在1個月中,1臺機器至多出現(xiàn)1次故障,且每臺機器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需1名工人進行維修,每臺機器出現(xiàn)故障的概率為.已知1名工人每月只有維修2臺機器的能力(若有2臺機器同時出現(xiàn)故障,工廠只有1名維修工人,則該工人只能逐臺維修,對工廠的正常運行沒有任何影響),每臺機器不出現(xiàn)故障或出現(xiàn)故障時能及時得到維修,就能使該廠獲得10萬元的利潤,否則將虧損2萬元.該工廠每月需支付給每名維修工人1萬元的工資.

(1)若每臺機器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時,有工人進行維修(例如:3臺大型機器出現(xiàn)故障,則至少需要2名維修工人),則稱工廠能正常運行.若該廠只有1名維修工人,求工廠每月能正常運行的概率;

(2)已知該廠現(xiàn)有2名維修工人.

(。┯浽搹S每月獲利為萬元,求的分布列與數(shù)學(xué)期望;

(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘1名維修工人?

查看答案和解析>>

同步練習(xí)冊答案