【題目】已知數(shù)列滿足,a11a2,且[3+(-1n]an22an2[(-1n1]0,nN*,記T2n為數(shù)列{an}的前2n項和,數(shù)列{bn}是首項和公比都是2的等比數(shù)列,則使不等式·<1成立的最小整數(shù)n為(

A.7B.6C.5D.4

【答案】C

【解析】

根據(jù)遞推關系分奇偶求出數(shù)列的關系,求出,題目中的不等式等價于求使成立的最小整數(shù)n.

由題,當n為偶數(shù)時,,所以是以a2為首項,為公比的等比數(shù)列,

n為奇數(shù)時,,所以是以a11為首項,2為公差的等差數(shù)列,

所以

,

數(shù)列{bn}是首項和公比都是2的等比數(shù)列,,

·<1,

依次檢驗:當n=1時,不滿足,當n=2時,不滿足,

n=3時,不滿足,當n=4時,不滿足,當n=5時,滿足,

所以滿足條件的最小正整數(shù)為5.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個單位長度,再向下平移1個單位,得到函數(shù)的圖像.

1)當時,求的值域

2)令,若對任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點

(1)求橢圓的方程,并求其離心率;

(2)過點軸的垂線,設點為第四象限內一點且在橢圓上(點不在直線上),點關于的對稱點為,直線交于另一點.設為原點,判斷直線與直線的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由我國引領的5G時代已經到來,5G的發(fā)展將直接帶動包括運營、制造、服務在內的通信行業(yè)整體的快速發(fā)展,進而對增長產生直接貢獻,并通過產業(yè)間的關聯(lián)效應和波及效應,間接帶動國民經濟各行業(yè)的發(fā)展,創(chuàng)造岀更多的經濟增加值.如圖是某單位結合近年數(shù)據(jù),對今后幾年的5G經濟產出所做的預測.結合下圖,下列說法正確的是(

A.5G的發(fā)展帶動今后幾年的總經濟產出逐年增加

B.設備制造商的經濟產出前期增長較快,后期放緩

C.設備制造商在各年的總經濟產出中一直處于領先地位

D.信息服務商與運營商的經濟產出的差距有逐步拉大的趨勢

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型工廠有6臺大型機器,在1個月中,1臺機器至多出現(xiàn)1次故障,且每臺機器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需1名工人進行維修,每臺機器出現(xiàn)故障的概率為.已知1名工人每月只有維修2臺機器的能力(若有2臺機器同時出現(xiàn)故障,工廠只有1名維修工人,則該工人只能逐臺維修,對工廠的正常運行沒有任何影響),每臺機器不出現(xiàn)故障或出現(xiàn)故障時能及時得到維修,就能使該廠獲得10萬元的利潤,否則將虧損2萬元.該工廠每月需支付給每名維修工人1萬元的工資.

(1)若每臺機器在當月不出現(xiàn)故障或出現(xiàn)故障時,有工人進行維修(例如:3臺大型機器出現(xiàn)故障,則至少需要2名維修工人),則稱工廠能正常運行.若該廠只有1名維修工人,求工廠每月能正常運行的概率;

(2)已知該廠現(xiàn)有2名維修工人.

(。┯浽搹S每月獲利為萬元,求的分布列與數(shù)學期望;

(ⅱ)以工廠每月獲利的數(shù)學期望為決策依據(jù),試問該廠是否應再招聘1名維修工人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國有個名句運籌帷幄之中,決勝千里之外”.其中的原意是指《孫子算經》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如下表:

表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是:,則7288用算籌式可表示為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖(1)梯形中,,過,,沿翻折后得圖(2),使得,又點滿足,連接,且.

1)證明:平面;

2)求三棱錐外接球的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的直線與拋物線交于,兩點,以,兩點為切點分別作拋物線的切線,,設交于點.

1)求;

2)過的直線交拋物線,兩點,證明:,并求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經過點,右焦點到直線的距離為3

1)求橢圓E的標準方程;

2)過點A作兩條互相垂直的直線,分別交橢圓于MN兩點,求證:直線MN恒過定點

查看答案和解析>>

同步練習冊答案