科目: 來源: 題型:
【題目】已知點在拋物線上,點是拋物線的焦點,線段的中點為.
(1)若點的坐標(biāo)為,且是的垂心,求直線的方程;
(2)若點是直線上的動點,且,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的非負半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求出圓的直角坐標(biāo)方程;
(2)已知圓與軸相交于, 兩點,直線: 關(guān)于點對稱的直線為.若直線上存在點使得,求實數(shù)的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)兩點在拋物線上,是AB的垂直平分線,
(1)當(dāng)且僅當(dāng)取何值時,直線經(jīng)過拋物線的焦點F?證明你的結(jié)論;
(2)若,弦AB是否過定點,若過定點,求出該定點,若不過定點,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面五邊形ABCDE中,AB∥CE,且AE=2,∠AEC=60°,CD=ED=,cos∠EDC=.將△CDE沿CE折起,使點D移動到P的位置,且AP=,得到四棱錐P-ABCE.
(1)求證:AP⊥平面ABCE;
(2)記平面PAB與平面PCE相交于直線l,求證:AB∥l.
查看答案和解析>>
科目: 來源: 題型:
【題目】中央電視臺為了解一檔詩歌類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:
其中一個數(shù)字被污損;
(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率;
(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對詩歌知識的學(xué)習(xí)積累熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機統(tǒng)計了4位觀眾的周均學(xué)習(xí)詩歌知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示):
由表中數(shù)據(jù),試求線性回歸方程,并預(yù)測年齡在60歲的觀眾周均學(xué)習(xí)詩歌知識的時間.
參考公式:,
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(,是自然對數(shù)的底數(shù))
(Ⅰ) 設(shè)(其中是的導(dǎo)數(shù)),求的極小值;
(Ⅱ) 若對,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知是橢圓的兩個焦點,是橢圓上一點,當(dāng)時,有.
(1)求橢圓的標(biāo)準方程;
(2)設(shè)過橢圓右焦點的動直線與橢圓交于兩點,試問在鈾上是否存在與不重合的定點,使得恒成立?若存在,求出定點的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,在新高考改革中,打破文理分科的“”模式初露端倪,其中語、數(shù)、外三門課為必考科目,剩下三門為選考科目選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學(xué)生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分,假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體、、、分別賦分分、分、分、分,為了讓學(xué)生們體驗“賦分制”計算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單料全班排名),知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學(xué)成績(滿分分)莖葉圖如圖所示,小明同學(xué)在這次考試中物理分,化學(xué)多分.
(1)采用賦分制后,求小明物理成績的最后得分;
(2)若小明的化學(xué)成績最后得分為分,求小明的原始成績的可能值;
(3)若小明必選物理,其他兩科從化學(xué)、生物、歷史、地理、政治五科中任選,求小明此次考試選考科目包括化學(xué)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com