相關習題
 0  265547  265555  265561  265565  265571  265573  265577  265583  265585  265591  265597  265601  265603  265607  265613  265615  265621  265625  265627  265631  265633  265637  265639  265641  265642  265643  265645  265646  265647  265649  265651  265655  265657  265661  265663  265667  265673  265675  265681  265685  265687  265691  265697  265703  265705  265711  265715  265717  265723  265727  265733  265741  266669 

科目: 來源: 題型:

【題目】如圖,點E為正方形ABCDCD上異于點C、D的動點,將△ADE沿AE翻折成△SAE,在翻折過程中,下列三個說法中正確的個數(shù)是(

①存在點E和某一翻折位置使得AE∥平面SBC;

②存在點E和某一翻折位置使得SA⊥平面SBC;

③二面角SABE的平面角總是小于2SAE

A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:

【題目】已知實數(shù)滿足不等式組,若的最大值為8,則z的最小值為(

A.2B.1C.0D.1

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).在以為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為

(Ⅰ)求曲線的普通方程和直線的直角坐標方程;

(Ⅱ)設點,若直線與曲線交于,兩點,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求的最小值.

(Ⅱ)若在區(qū)間上有兩個極值點,

(i)求實數(shù)的取值范圍;

(ii)求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】某水果種植基地引進一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量(單位:)和與它“相近”的株數(shù)具有線性相關關系(兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近株數(shù)為0,1,2,3,4時每株產(chǎn)量的相關數(shù)據(jù)如下:

0

1

2

3

4

15

12

11

9

8

(1)求出該種水果每株的產(chǎn)量關于它“相近”株數(shù)的回歸方程;

(2)有一種植戶準備種植該種水果500株,且每株與它“相近”的株數(shù)都為,計劃收獲后能全部售出,價格為10元,如果收入(收入=產(chǎn)量×價格)不低于25000元,則的最大值是多少?

(3)該種植基地在如圖所示的直角梯形地塊的每個交叉點(直線的交點)處都種了一株該種水果,其中每個小正方形的邊長和直角三角形的直角邊長都為,已知該梯形地塊周邊無其他樹木影響,若從所種的該水果中隨機選取一株,試根據(jù)(1)中的回歸方程,預測它的產(chǎn)量的分布列與數(shù)學期望.

附:回歸方程中斜率和截距的最小二乘法估計公式分別為:.

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該?忌纳龑W情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結論正確的是  

A. 與2015年相比,2018年一本達線人數(shù)減少

B. 與2015年相比,2018年二本達線人數(shù)增加了

C. 2015年與2018年藝體達線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

科目: 來源: 題型:

【題目】已知(其中.

1)當時,計算;

2)記,試比較的大小,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在三棱錐中,底面是邊長為的正三角形,點在底面上的射影恰是的中點,側棱和底面成角.

1)若為側棱上一點,當為何值時,;

2)求二面角的余弦值大。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)若曲線在點處的切線方程為,求的值;

2)當時,求證:

3)設函數(shù),其中為實常數(shù),試討論函數(shù)的零點個數(shù),并證明你的結論.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,兩座建筑物的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是,從建筑物的頂部看建筑物的視角

1)求的長度;

2)在線段上取一點(點與點,不重合),從點看這兩座建筑物的視角分別為,,問點在何處時,最。

查看答案和解析>>

同步練習冊答案