相關(guān)習(xí)題
 0  265535  265543  265549  265553  265559  265561  265565  265571  265573  265579  265585  265589  265591  265595  265601  265603  265609  265613  265615  265619  265621  265625  265627  265629  265630  265631  265633  265634  265635  265637  265639  265643  265645  265649  265651  265655  265661  265663  265669  265673  265675  265679  265685  265691  265693  265699  265703  265705  265711  265715  265721  265729  266669 

科目: 來源: 題型:

【題目】經(jīng)統(tǒng)計,用于數(shù)學(xué)學(xué)習(xí)的時間(單位:小時)與成績(單位:分)近似于線性相關(guān)關(guān)系.對某小組學(xué)生每周用于數(shù)學(xué)的學(xué)習(xí)時間與數(shù)學(xué)成績進(jìn)行數(shù)據(jù)收集如下:

由樣本中樣本數(shù)據(jù)求得回歸直線方程為,則點(diǎn)與直線的位置關(guān)系是( )

A. B.

C. D. 的大小無法確定

查看答案和解析>>

科目: 來源: 題型:

【題目】某車間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務(wù),每件產(chǎn)品由3型零件和1型零件配套組成,每個工人每小時能加工5型零件或者3型零件,現(xiàn)在把這些工人分成兩組同時工作(分組后人數(shù)不再進(jìn)行調(diào)整),每組加工同一種型號的零件.設(shè)加工型零件的工人數(shù)為.

(1)設(shè)完成、型零件加工所需的時間分別為、小時,寫出的解析式;

(2)當(dāng)取何值時,完成全部生產(chǎn)任務(wù)的時間最短?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)若曲線在點(diǎn)處的切線與直線平行,求的值;

2)在(1)條件下,求函數(shù)的單調(diào)區(qū)間和極值;

3)當(dāng),且時,證明:.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直三棱柱中,底面是邊長為2的等邊三角形,點(diǎn)D,E分別是的中點(diǎn).

(1)證明:平面;

(2)若,證明:平面

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

)當(dāng)時,證明:有且只有一個零點(diǎn);

)求函數(shù)的極值.

查看答案和解析>>

科目: 來源: 題型:

【題目】中國剩余定理又稱孫子定理”.1852年,英國來華傳教士偉烈亞力將《孫子算經(jīng)》中物不知數(shù)問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱之為中國剩余定理”.“中國剩余定理講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將120192019個數(shù)中,能被3除余1且被4除余1的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項(xiàng)數(shù)為(

A.167B.168C.169D.170

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為參數(shù)).以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求圓的極坐標(biāo)方程;

2)直線的極坐標(biāo)方程是,射線與圓的交點(diǎn)為,,與直線的交點(diǎn)為,求線段的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)討論上的零點(diǎn)個數(shù);

(2)當(dāng)時,若存在,使,求實(shí)數(shù)的取值范圍.(為自然對數(shù)的底數(shù),其值為2.71828……)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知過點(diǎn)A(01)且斜率為k的直線l與圓C(x2)2(y3)21交于M,N兩點(diǎn).

(1)k的取值范圍;

(2)12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖(1)所示,在中,邊上的高,且,的中點(diǎn).現(xiàn)沿進(jìn)行翻折,使得平面平面,得到的圖形如圖(2)所示.

1)求證:;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案