科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求的普通方程和的直角坐標(biāo)方程;
(Ⅱ)若與交于,兩點(diǎn),求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),其中a為正實(shí)數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn),,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】一場(chǎng)突如其來的新冠肺炎疫情在全國(guó)蔓延,在黨中央的堅(jiān)強(qiáng)領(lǐng)導(dǎo)和統(tǒng)一指揮下,全國(guó)人民眾志成城、團(tuán)結(jié)一心,共抗疫情。每天測(cè)量體溫也就成為了所有人的一項(xiàng)責(zé)任,一般認(rèn)為成年人腋下溫度(單位:℃)平均在36℃~37℃之間即為正常體溫,超過37.1℃即為發(fā)熱。發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類型:低熱:;高熱:;超高熱(有生命危險(xiǎn)):.
某位患者因發(fā)熱,雖排除肺炎,但也于12日至26日住院治療. 醫(yī)生根據(jù)病情變化,從14日開始,以3天為一個(gè)療程,分別用三種不同的抗生素為該患者進(jìn)行消炎退熱. 住院期間,患者每天上午8:00服藥,護(hù)士每天下午16:00為患者測(cè)量腋下體溫記錄如下:
抗生素使用情況 | 沒有使用 | 使用“抗生素A”治療 | 使用“抗生素B”治療 | |||||
日期 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 |
體溫(℃) | 38.7 | 39.4 | 39.7 | 40.1 | 39.9 | 39.2 | 38.9 | 39.0 |
抗生素使用情況 | 使用“抗生素C”治療 | 沒有使用 | |||||
日期 | 20日 | 21日 | 22日 | 23日 | 24日 | 25日 | 26日 |
體溫(℃) | 38.4 | 38.0 | 37.6 | 37.1 | 36.8 | 36.6 | 36.3 |
(1)請(qǐng)你計(jì)算住院期間該患者體溫不低于39℃的各天體溫平均值;
(2)在18日—22日期間,醫(yī)生會(huì)隨機(jī)選取3天在測(cè)量體溫的同時(shí)為該患者進(jìn)行某一特殊項(xiàng)目“項(xiàng)目”的檢查,求至少兩天在高熱體溫下做“項(xiàng)目”檢查的概率;
(3)抗生素治療一般在服藥后2-8個(gè)小時(shí)就能出現(xiàn)血液濃度的高峰,開始?xì)缂?xì)菌,達(dá)到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨(dú)立,請(qǐng)依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1),在圓錐內(nèi)放兩個(gè)大小不同且不相切的球,使得它們分別與圓錐的側(cè)面、底面相切,用與兩球都相切的平面截圓錐的側(cè)面得到截口曲線是橢圓.理由如下:如圖(2),若兩個(gè)球分別與截面相切于點(diǎn),在得到的截口曲線上任取一點(diǎn),過點(diǎn)作圓錐母線,分別與兩球相切于點(diǎn),由球與圓的幾何性質(zhì),得,,所以,且,由橢圓定義知截口曲線是橢圓,切點(diǎn)為焦點(diǎn).這個(gè)結(jié)論在圓柱中也適用,如圖(3),在一個(gè)高為,底面半徑為的圓柱體內(nèi)放球,球與圓柱底面及側(cè)面均相切.若一個(gè)平面與兩個(gè)球均相切,則此平面截圓柱所得的截口曲線也為一個(gè)橢圓,則該橢圓的離心率為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線過點(diǎn),傾斜角為.
(1)求曲線的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)設(shè)直線與曲線交于,兩點(diǎn),求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的極值點(diǎn)個(gè)數(shù);
(2)若有兩個(gè)極值點(diǎn),試判斷與的大小關(guān)系并證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:(a>b>0)的焦距為2,且過點(diǎn).
(1)求橢圓C的方程;
(2)已知△BMN是橢圓C的內(nèi)接三角形,若坐標(biāo)原點(diǎn)O為△BMN的重心,求點(diǎn)O到直線MN距離的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知四邊形AA1C1C為矩形,AA1=6,AB=AC=4,∠BAC=∠BAA1=60°,∠A1AC的角平分線AD交CC1于D.
(1)求證:平面BAD⊥平面AA1C1C;
(2)求二面角A﹣B1C1﹣A1的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】垃圾分類是對(duì)垃圾進(jìn)行有效處置的一種科學(xué)管理方法,為了了解居民對(duì)垃圾分類的知曉率和參與率,引導(dǎo)居民積極行動(dòng),科學(xué)地進(jìn)行垃圾分類,某小區(qū)隨機(jī)抽取年齡在區(qū)間[25,85]上的50人進(jìn)行調(diào)研,統(tǒng)計(jì)出年齡頻數(shù)分布及了解垃圾分類的人數(shù)如表:
(1)填寫下面2x2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為以65歲為分界點(diǎn)居民對(duì)了解垃圾分類的有關(guān)知識(shí)有差異;
(2)若對(duì)年齡在[45,55),[25,35)的被調(diào)研人中各隨機(jī)選取2人進(jìn)行深入調(diào)研,記選中的4人中不了解垃圾分類的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
參考公式和數(shù)據(jù)K2,其中n=a+b+c+d.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com