【題目】如圖(1),在圓錐內(nèi)放兩個大小不同且不相切的球,使得它們分別與圓錐的側(cè)面、底面相切,用與兩球都相切的平面截圓錐的側(cè)面得到截口曲線是橢圓.理由如下:如圖(2),若兩個球分別與截面相切于點,在得到的截口曲線上任取一點,過點作圓錐母線,分別與兩球相切于點,由球與圓的幾何性質(zhì),得,所以,且,由橢圓定義知截口曲線是橢圓,切點為焦點.這個結(jié)論在圓柱中也適用,如圖(3),在一個高為,底面半徑為的圓柱體內(nèi)放球,球與圓柱底面及側(cè)面均相切.若一個平面與兩個球均相切,則此平面截圓柱所得的截口曲線也為一個橢圓,則該橢圓的離心率為______.

【答案】

【解析】

根據(jù)題意可得橢圓的長軸長和短軸長,再代入離心率方程,即可得答案;

如圖所示,

根據(jù)題意可得橢圓上的點到兩個切點的距離等于,,

,,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標原點,橢圓的離心率為,雙曲線的漸近線與橢圓的交點到原點的距離均為.

1)求橢圓的標準方程;

2)若點為橢圓上的動點,三點共線,直線的斜率分別為.

i)證明:;

ii)若,設(shè)直線過點,直線過點,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,直線與拋物線交于,兩點.

1)若,求直線的方程;

2)過點作直線交拋物線兩點,若線段,的中點分別為,,直線軸的交點為,求點到直線距離和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人們通常以分貝(符號是)為單位來表示聲音強度的等級,30~40分貝是較理想的安靜環(huán)境,超過50分貝就會影響睡眠和休息,70分貝以上會干擾談話,長期生活在90分貝以上的嗓聲環(huán)境,會嚴重影響聽力和引起神經(jīng)衰弱、頭疼、血壓升高等疾病,如果突然暴露在高達150分貝的噪聲環(huán)境中,聽覺器官會發(fā)生急劇外傷,引起鼓膜破裂出血,雙耳完全失去聽力,為了保護聽力,應(yīng)控制噪聲不超過90分貝,一般地,如果強度為的聲音對應(yīng)的等級為,則有,則的聲音與的聲音強度之比為(

A.10B.100C.1000D.10000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】垃圾分類是對垃圾進行有效處置的一種科學(xué)管理方法,為了了解居民對垃圾分類的知曉率和參與率,引導(dǎo)居民積極行動,科學(xué)地進行垃圾分類,某小區(qū)隨機抽取年齡在區(qū)間[25,85]上的50人進行調(diào)研,統(tǒng)計出年齡頻數(shù)分布及了解垃圾分類的人數(shù)如表:

1)填寫下面2x2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為以65歲為分界點居民對了解垃圾分類的有關(guān)知識有差異;

2)若對年齡在[45,55),[25,35)的被調(diào)研人中各隨機選取2人進行深入調(diào)研,記選中的4人中不了解垃圾分類的人數(shù)為X,求隨機變量X的分布列和數(shù)學(xué)期望.

參考公式和數(shù)據(jù)K2,其中na+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義域為的奇函數(shù),且它的最小正周期是T,已知,.給出下列四個判斷:①對于給定的正整數(shù),存在,使得成立;②當a時,對于給定的正整數(shù),存在,使得成立;③當時,函數(shù)既有對稱軸又有對稱中心;④當時,的值只有0.其中正確判斷的有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列:Aa1,a2,…,an,Bb1b2,…,bn.已知ai,bj∈{0,1}(i=1,2,…,n;j=1,2,…,n),定義n×n數(shù)表,其中xij.

(1)若A11,1,0,B01,0,0,寫出XA,B);

(2)若A,B是不同的數(shù)列,求證:n×n數(shù)表XA,B)滿足“xij=xjii=1,2,…,nj=1,2,…,nij)”的充分必要條件為“ak+bk=1k=1,2,…,n)”;

(3)若數(shù)列AB中的1共有n個,求證:n×n數(shù)表XA,B)中1的個數(shù)不大于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點分別為,實軸長為4,漸近線方程為,點N在圓上,則的最小值為( )

A. B. 5C. 6D. 7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點個數(shù);

2)若有兩個極值點,試判斷的大小關(guān)系并證明.

查看答案和解析>>

同步練習(xí)冊答案