【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線過點(diǎn),傾斜角為.
(1)求曲線的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)設(shè)直線與曲線交于,兩點(diǎn),求的值.
【答案】(1),(為參數(shù));(2).
【解析】
(1)將曲線的極坐標(biāo)方程兩邊同乘,根據(jù)公式即可化簡為直角坐標(biāo)方程;根據(jù)已知信息,直接寫出直線的參數(shù)方程,整理化簡即可;
(2)聯(lián)立曲線的直角坐標(biāo)方程和直線的參數(shù)方程,得到關(guān)于的一元二次方程,根據(jù)直線參數(shù)方程中參數(shù)的幾何意義,求得結(jié)果.
(1)因?yàn)?/span>,所以,
所以,即曲線的直角坐標(biāo)方程為:,
直線的參數(shù)方程(為參數(shù)),
即(為參數(shù)).
(2)設(shè)點(diǎn),對(duì)應(yīng)的參數(shù)分別為,,
將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,
得,
整理,得,
所以,
因?yàn)?/span>
所以=,
=4,
所以=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】試在①,②,③三個(gè)條件中選兩個(gè)條件補(bǔ)充在下面的橫線處,使得面ABCD成立,請(qǐng)說明理由,并在此條件下進(jìn)一步解答該題:
如圖,在四棱錐中,,底ABCD為菱形,若__________,且,異面直線PB與CD所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形是梯形,如圖,,,,為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置(如圖2),且
(1)求證:平面平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會(huì)品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時(shí)期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體ABCD﹣A1B1C1D1中,E是棱DD1的中點(diǎn),F是側(cè)面CDD1C1上的動(dòng)點(diǎn),且B1F∥平面A1BE,記B1與F的軌跡構(gòu)成的平面為α.
①F,使得B1F⊥CD1
②直線B1F與直線BC所成角的正切值的取值范圍是[,]
③α與平面CDD1C1所成銳二面角的正切值為2
④正方體ABCD﹣A1B1C1D1的各個(gè)側(cè)面中,與α所成的銳二面角相等的側(cè)面共四個(gè).
其中正確命題的序號(hào)是_____.(寫出所有正確的命題序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求的普通方程和的直角坐標(biāo)方程;
(Ⅱ)若與交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ex+sinx+ax(a∈R).
(Ⅰ)當(dāng)a=﹣2時(shí),求證:f(x)在(﹣∞,0)上單調(diào)遞減;
(Ⅱ)若對(duì)任意x≥0,f(x)≥1恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)若f(x)有最小值,請(qǐng)直接給出實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南北朝時(shí)期的偉大數(shù)學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:“冪勢(shì)既同,則積不容異”.其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任意平面所截,如果截得兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為、,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為、,則命題:“、相等”是命題“、總相等”的( )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的焦距為2,且過點(diǎn).
(1)求橢圓C的方程;
(2)已知△BMN是橢圓C的內(nèi)接三角形,若坐標(biāo)原點(diǎn)O為△BMN的重心,求點(diǎn)O到直線MN距離的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com