科目: 來源: 題型:
【題目】已知函數(shù)和函數(shù).
(1)若曲線在處的切線過點,求實數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若不等式對于任意的恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓:過點,橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,設(shè)直線與圓相切與點,與橢圓相切于點,當(dāng)為何值時,線段長度最大?并求出最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某居民區(qū)內(nèi)有一直角梯形區(qū)域,,,百米,百米.該區(qū)域內(nèi)原有道路,現(xiàn)新修一條直道(寬度忽略不計),點在道路上(異于,兩點),,.
(1)用表示直道的長度;
(2)計劃在區(qū)域內(nèi)修建健身廣場,在區(qū)域內(nèi)種植花草.已知修建健身廣場的成本為每平方百米4萬元,種植花草的成本為每平方百米2萬元,新建道路的成本為每百米4萬元,求以上三項費用總和的最小值(單位:萬元).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線E的極坐標(biāo)方程為,直線l的參數(shù)方程為(t為參數(shù)).點P為曲線E上的動點,點Q為線段OP的中點.
(1)求點Q的軌跡(曲線C)的直角坐標(biāo)方程;
(2)若直線l交曲線C于A,B兩點,點恰好為線段AB的三等分點,求直線l的普通方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定點S( -2,0) ,T(2,0),動點P為平面上一個動點,且直線SP、TP的斜率之積為.
(1)求動點P的軌跡E的方程;
(2)設(shè)點B為軌跡E與y軸正半軸的交點,是否存在直線l,使得l交軌跡E于M,N兩點,且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖平面PAC⊥平面ABC, AC⊥BC,PE// BC,M,N分別是AE,AP的中點,且△PAC是邊長為2的等邊三角形,BC=3,PE =2.
(1)求證:MN⊥平面PAC;
(2)求平面PAE與平面ABC夾角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】2020年初,由于疫情影響,開學(xué)延遲,為了不影響學(xué)生的學(xué)習(xí),國務(wù)院、省市區(qū)教育行政部門倡導(dǎo)各校開展“停學(xué)不停課、停學(xué)不停教”,某校語文學(xué)科安排學(xué)生學(xué)習(xí)內(nèi)容包含老師推送文本資料學(xué)習(xí)和視頻資料學(xué)習(xí)兩類,且這兩類學(xué)習(xí)互不影響已知其積分規(guī)則如下:每閱讀一篇文本資料積1分,每日上限積5分;觀看視頻1個積2分,每日上限積6分.經(jīng)過抽樣統(tǒng)計發(fā)現(xiàn),文本資料學(xué)習(xí)積分的概率分布表如表1所示,視頻資料學(xué)習(xí)積分的概率分布表如表2所示.
(1)現(xiàn)隨機抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;
(2)現(xiàn)隨機抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為ξ,求ξ的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報名,其中報名的醫(yī)生18人,護士12人,醫(yī)技6人,根據(jù)需要,從中抽取一個容量為n的樣本參加救援隊,若采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員.當(dāng)抽取n+1人時,若采用系統(tǒng)抽樣,則需剔除1個報名人員,則抽取的救援人員為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com