科目: 來源: 題型:
【題目】某省2020年高考將實施新的高考改革方案.考生的高考總成績由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、政治、歷史、地理6科中選擇3門作為選考科目,語文、數學、外語三科各占150分,選考科目成績采用“賦分制”,即原始分數不直接用,而是按照學生分數在本科目考試的排名來劃分等級并以此打分得到最后得分.根據高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為,,,,,,,共8個等級.參照正態(tài)分布原則,確定各等級人數所占比例分別為3%,7%,16%,24%,24%,16%,7%,3%.等級考試科目成績計入考生總成績時,將至等級內的考生原始成績,依照等比例轉換法則,分別轉換到91~100,81~90,71~80,61~70,51~60,41~50,31~40,21~30八個分數區(qū)間,得到考生的等級成績.舉例說明:某同學化學學科原始分為65分,該學科等級的原始分分布區(qū)間為58~69,則該同學化學學科的原始成績屬等級.而等級的轉換分區(qū)間為61~70,那么該同學化學學科的轉換分計算方法為:設該同學化學學科的轉換等級分為,,求得.四舍五入后該同學化學學科賦分成績?yōu)?/span>67.為給高一學生合理選科提供依據,全省對六個選考科目進行測試,某校高一年級2000人,根據該校高一學生的物理原始成績制成頻率分布直方圖(見右圖).由頻率分布直方圖,可以認為該校高一學生的物理原始成績服從正態(tài)分布,用這2000名學生的平均物理成績作為的估計值,用這2000名學生的物理成績的方差作為的估計值.
(1)若張明同學在這次考試中的物理原始分為86分,等級為,其所在原始分分布區(qū)間為82~93,求張明轉換后的物理成績(精確到1);按高考改革方案,若從全省考生中隨機抽取100人,記表示這100人中等級成績在區(qū)間內的人數,求最有可能的取值(概率最大);
(2)①求,(同一組中的數據用該組區(qū)間的中點作代表);
②由①中的數據,記該校高一學生的物理原始分高于84分的人數為,求.
附:若,則,,.
查看答案和解析>>
科目: 來源: 題型:
【題目】在①是與的等差中項;②是與的等比中項;③數列的前5項和為65這三個條件中任選一個,補充在橫線中,并解答下面的問題.
已知是公差為2的等差數列,其前項和為,________________________.
(1)求;
(2)設,是否存在,使得?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】2013年5月,華人數學家張益唐的論文《素數間的有界距離》在《數學年刊》上發(fā)表,破解了困擾數學界長達一個多世紀的難題,證明了孿生素數猜想的弱化形式,即發(fā)現存在無窮多差小于7000萬的素數對.這是第一次有人證明存在無窮多組間距小于定值的素數對.孿生素數猜想是希爾伯特在1900年提出的23個問題中的第8個,可以這樣描述:存在無窮多個素數,使得是素數,素數對稱為孿生素數.在不超過16的素數中任意取出不同的兩個,則可組成孿生素數的概率為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數,.
(1)當時,
①若曲線與直線相切,求c的值;
②若曲線與直線有公共點,求c的取值范圍.
(2)當時,不等式對于任意正實數x恒成立,當c取得最大值時,求a,b的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數列的首項,其前項和為,設.
(1)若,,且數列是公差為的等差數列,求;
(2)設數列的前項和為,滿足.
①求數列的通項公式;
②若對,且,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點分別為橢圓的左右頂點和右焦點,過點的直線交橢圓于點.
(1)若,點與橢圓左準線的距離為,求橢圓的方程;
(2)已知直線的斜率是直線斜率的倍.
①求橢圓的離心率;
②若橢圓的焦距為,求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】有一塊以點為圓心,半徑為百米的圓形草坪,草坪內距離點百米的點有一用于灌溉的水籠頭,現準備過點修一條筆直小路交草坪圓周于兩點,為了方便居民散步,同時修建小路,其中小路的寬度忽略不計.
(1)若要使修建的小路的費用最省,試求小路的最短長度;
(2)若要在區(qū)域內(含邊界)規(guī)劃出一塊圓形的場地用于老年人跳廣場舞,試求這塊圓形廣場的最大面積.(結果保留根號和)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com