科目: 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為拋物線過焦點(diǎn)的弦,已知以為直徑的圓與相切于點(diǎn).
(1)求的值及圓的方程;
(2)設(shè)為上任意一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)三棱錐的體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計(jì)該企業(yè)一個月(按30天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,點(diǎn)E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(不含端點(diǎn)),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值時(shí),三棱錐A﹣BCD的外接球的表面積為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】將函數(shù)f(x)=sin 3x-cos 3x+1的圖象向左平移個單位長度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:
①它的圖象關(guān)于直線x=對稱;
②它的最小正周期為;
③它的圖象關(guān)于點(diǎn)(,1)對稱;
④它在[]上單調(diào)遞增.
其中所有正確結(jié)論的編號是( )
A.①②B.②③C.①②④D.②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)證明:當(dāng)時(shí),有最小值,無最大值;
(2)若在區(qū)間上方程恰有一個實(shí)數(shù)根,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】自從新型冠狀病毒爆發(fā)以來,全國范圍內(nèi)采取了積極的措施進(jìn)行防控,并及時(shí)通報(bào)各項(xiàng)數(shù)據(jù)以便公眾了解情況,做好防護(hù).以下是湖南省2020年1月23日-31日這9天的新增確診人數(shù).
日期 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
時(shí)間 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
新增確診人數(shù) | 15 | 19 | 26 | 31 | 43 | 78 | 56 | 55 | 57 |
經(jīng)過醫(yī)學(xué)研究,發(fā)現(xiàn)新型冠狀病毒極易傳染,一個病毒的攜帶者在病情發(fā)作之前通常有長達(dá)14天的潛伏期,這個期間如果不采取防護(hù)措施,則感染者與一位健康者接觸時(shí)間超過15秒,就有可能傳染病毒.
(1)將1月23日作為第1天,連續(xù)9天的時(shí)間作為變量x,每天新增確診人數(shù)作為變量y,通過回歸分析,得到模型用于對疫情進(jìn)行分析.對上表的數(shù)據(jù)作初步處理,得到下面的一些統(tǒng)計(jì)量的值(部分?jǐn)?shù)據(jù)已作近似處理):,.根據(jù)相關(guān)數(shù)據(jù),求該模型的回歸方程(結(jié)果精確到0.1),并依據(jù)該模型預(yù)測第10天新增確診人數(shù).
(2)如果一位新型冠狀病毒的感染者傳染給他人的概率為0.3,在一次12人的家庭聚餐中,只有一位感染者參加了聚餐,記余下的人員中被感染的人數(shù)為,求最有可能(即概率最大)的值是多少.
附:對于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓:,點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線交線段于點(diǎn).
(1)求點(diǎn)的軌跡方程.
(2)設(shè)點(diǎn),是的軌跡上異于頂點(diǎn)的任意兩點(diǎn),以為直徑的圓過點(diǎn).求證直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱中,,,,為棱上的動點(diǎn).
(1)若為的中點(diǎn),求證:平面;
(2)若平面平面ABC,且是否存在點(diǎn),使二面角的平面角的余弦值為?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位編著,它對我國民間普及珠算和數(shù)學(xué)知識起到了很大的作用,是東方古代數(shù)學(xué)的名著.在這部著作中,許多數(shù)學(xué)問題都是以歌訣形式呈現(xiàn)的,“九兒問甲歌”就是其中一首:“一個公公九個兒,若問生年總不知,自長排來差三歲,共年二百又零七,借問長兒多少歲,各兒歲數(shù)要詳推.”這首歌決的大意是:“一位老公公有九個兒子,九個兒子從大到小排列,相鄰兩人的年齡差三歲,并且兒子們的年齡之和為207歲,請問大兒子多少歲,其他幾個兒子年齡如何推算.”在這個問題中,記這位公公的第個兒子的年齡為,則( )
A.17B.29C.23D.35
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com