相關習題
 0  264328  264336  264342  264346  264352  264354  264358  264364  264366  264372  264378  264382  264384  264388  264394  264396  264402  264406  264408  264412  264414  264418  264420  264422  264423  264424  264426  264427  264428  264430  264432  264436  264438  264442  264444  264448  264454  264456  264462  264466  264468  264472  264478  264484  264486  264492  264496  264498  264504  264508  264514  264522  266669 

科目: 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點處的切線方程;

(2)證明:在區(qū)間上有且僅有個零點.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)e為自然對數(shù)的底數(shù)).

1)求函數(shù)的值域;

2)若不等式對任意恒成立,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】過拋物線)的焦點F且斜率為1的直線交拋物線CM,N兩點,且

1)求p的值;

2)拋物線C上一點,直線(其中)與拋物線C交于A,B兩個不同的點(A,B均與點Q不重合).設直線QA,QB的斜率分別為.

i)直線l是否過定點?如果是,請求出所有定點;如果不是,請說明理由;

ii)設點T在直線l上,且滿足,其中為坐標原點.當線段最長時,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱柱中,底面ABC為正三角形,底面ABC,,點在線段上,平面平面

1)請指出點的位置,并給出證明;

2)若,求與平面ABE夾角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某市環(huán)保部門對該市市民進行了一次動物保護知識的網(wǎng)絡問卷調(diào)查,每位市民僅有一次參加機會,通過隨機抽樣,得到參'與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結果如表所示:

組別

2

3

5

15

18

12

0

5

10

15

5

10

若規(guī)定問卷得分不低于70分的市民稱為“動物保護關注者”,則山圖中表格可得列聯(lián)表如下:

非“動物保護關注者”

是“動物保護關注者”

合計

10

45

55

15

30

45

合計

25

75

100

1)請判斷能否在犯錯誤的概率不超過005的前提下認為“動物保護關注者”與性別有關?

2)若問卷得分不低于80分的人稱為“動物保護達人”.現(xiàn)在從本次調(diào)查的“動物保護達人”中利用分層抽樣的方法隨機抽取6名市民參與環(huán)保知識問答,再從這6名市民中抽取2人參與座談會,求抽取的2名市民中,既有男“動物保護達人”又有女動物保護達人”的概率.

附表及公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在直三棱柱中,已知,.是線段的中點.

1)求直線與平面所成角的正弦值;

2)求二面角的大小的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),函數(shù)的圖象在處的切線與直線平行.

(Ⅰ)求實數(shù)的值;

(Ⅱ)若函數(shù)存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;

(Ⅲ)設()是函數(shù)的兩個極值點,若,試求的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,,,若的中點.

(1)證明:平面;

(2)求異面直線所成角;

(3)設線段上有一點,當與平面所成角的正弦值為時,求的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓與橢圓相交于點M0,1),N0-1),且橢圓的離心率為.

1)求的值和橢圓C的方程;

2)過點M的直線交圓O和橢圓C分別于A,B兩點.

①若,求直線的方程;

②設直線NA的斜率為,直線NB的斜率為,問:是否為定值? 如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線與直線的距離為,橢圓的離心率為.

(1)求橢圓的標準方程;

(2)在(1)的條件下,拋物線的焦點與點關于軸上某點對稱,且拋物線與橢圓在第四象限交于點,過點作拋物線的切線,求該切線方程并求該直線與兩坐標軸圍成的三角形面積.

查看答案和解析>>

同步練習冊答案