【題目】如圖,在三棱錐中,平面平面,,若的中點(diǎn).

(1)證明:平面;

(2)求異面直線(xiàn)所成角;

(3)設(shè)線(xiàn)段上有一點(diǎn),當(dāng)與平面所成角的正弦值為時(shí),求的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)(3).

【解析】

(1)先證明平面平面,再證明平面;(2)分別以,軸,軸,軸的非負(fù)半軸,建立空間直角坐標(biāo)系,利用向量法求異面直線(xiàn)所成角;(3)設(shè),,利用向量法得到,解方程即得t的值和的長(zhǎng).

(1)∵,

,

∵平面平面,

平面平面

平面,

平面.

(2)∵,

,,

如圖,分別以,,軸,軸,軸的非負(fù)半軸,建立空間直角坐標(biāo)系,

,,,

,,

,

∴異面直線(xiàn)所成角為.

(3)設(shè)為平面的法向量,

,

,即,

設(shè),,

,

設(shè)與平面所成角為

,

,

,

,

(舍),,

的長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),(為常數(shù)),.曲線(xiàn)在點(diǎn)處的切線(xiàn)與軸平行

(1)的值;

(2)的單調(diào)區(qū)間和最小值;

(3)對(duì)任意恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)10元;重量超過(guò)的包裹,除收費(fèi)10元之外,超過(guò)的部分,每超出(不足,按計(jì)算)需再收5元.

該公司對(duì)近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:

(1)某人打算將三件禮物隨機(jī)分成兩個(gè)包裹寄出,求該人支付的快遞費(fèi)不超過(guò)30元的概率;

(2)該公司從收取的每件快遞的費(fèi)用中抽取5元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.前臺(tái)工作人員每人每天攬件不超過(guò)150件,工資100元,目前前臺(tái)有工作人員3人,那么,公司將前臺(tái)工作人員裁員1人對(duì)提高公司利潤(rùn)是否更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著節(jié)能減排意識(shí)深入人心以及共享單車(chē)在饒城的大范圍推廣,越來(lái)越多的市民在出行時(shí)喜歡選擇騎行共享單車(chē)。為了研究廣大市民在共享單車(chē)上的使用情況,某公司在我市隨機(jī)抽取了100名用戶(hù)進(jìn)行調(diào)查,得到如下數(shù)據(jù):

每周使用次數(shù)

1次

2次

3次

4次

5次

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合計(jì)

10

8

7

11

14

50

(1)如果認(rèn)為每周使用超過(guò)3次的用戶(hù)為“喜歡騎行共享單車(chē)”,請(qǐng)完成列表(見(jiàn)答題卡),并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為是否“喜歡騎行共享單車(chē)”與性別有關(guān)?

(2)每周騎行共享單車(chē)6次及6次以上的用戶(hù)稱(chēng)為“騎行達(dá)人”,視頻率為概率,在我市所有“騎行達(dá)人”中,隨機(jī)抽取4名用戶(hù).

① 求抽取的4名用戶(hù)中,既有男生“騎行達(dá)人”又有女“騎行達(dá)人”的概率;

②為了鼓勵(lì)女性用戶(hù)使用共享單車(chē),對(duì)抽出的女“騎行達(dá)人”每人獎(jiǎng)勵(lì)500元,記獎(jiǎng)勵(lì)總金額為,求的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的頂點(diǎn)在坐標(biāo)原點(diǎn),過(guò)拋物線(xiàn)的焦點(diǎn)的直線(xiàn)與該拋物線(xiàn)交于兩點(diǎn), 面積的最小值為2

1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;

2)試問(wèn)是否存在定點(diǎn),過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),當(dāng)三點(diǎn)不共線(xiàn)時(shí),使得以為直徑的圓必過(guò)點(diǎn).若存在,求出所有符合條件的點(diǎn);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ω00φπ,直線(xiàn)是函數(shù)fx)=sinωx+φ)圖象的兩條相鄰的對(duì)稱(chēng)軸,若將函數(shù)fx)圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,則得到的圖象的函數(shù)解析式是(

A.B.

C.y2cos2xD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)Fx軸上,拋物線(xiàn)C上一點(diǎn)到焦點(diǎn)F的距離為

求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;

設(shè)點(diǎn),過(guò)點(diǎn)的直線(xiàn)l與拋物線(xiàn)C相交于A,B兩點(diǎn),記直線(xiàn)MA與直線(xiàn)MB的斜率分別為,,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解高二年級(jí)學(xué)生某次數(shù)學(xué)考試成績(jī)的分布情況,從該年級(jí)的1120名學(xué)生中隨機(jī)抽取了100名學(xué)生的數(shù)學(xué)成績(jī),發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績(jī)按照,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說(shuō)法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計(jì)為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐, 平面,底面中, , ,且, 的中點(diǎn).

(1)求證:平面平面;

(2)問(wèn)在棱上是否存在點(diǎn),使平面,若存在,請(qǐng)求出二面角的余弦值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案