相關(guān)習題
 0  263607  263615  263621  263625  263631  263633  263637  263643  263645  263651  263657  263661  263663  263667  263673  263675  263681  263685  263687  263691  263693  263697  263699  263701  263702  263703  263705  263706  263707  263709  263711  263715  263717  263721  263723  263727  263733  263735  263741  263745  263747  263751  263757  263763  263765  263771  263775  263777  263783  263787  263793  263801  266669 

科目: 來源: 題型:

【題目】已知過拋物線y22pxp0)的焦點F的直線與拋物線交于A,B兩點,且3,拋物線的準線lx軸交與點C,AA1垂直l于點A1,若四邊形AA1CF的面積為,則準線l的方程為(

A.B.C.x=﹣2D.x=﹣1

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.

(1)求橢圓的方程;

(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若,求實數(shù)取值的集合;

(Ⅱ)當時,對任意,,令,證明.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的短軸長為,離心率為.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設(shè)橢圓的左,右焦點分別為,左,右頂點分別為,,點,,為橢圓上位于軸上方的兩點,且,直線的斜率為,記直線,的斜率分別為,,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖①,在等腰梯形中,分別為的中點 中點,現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中.

(1)證明:;

(2)求三棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),若),,,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了讓稅收政策更好的為社會發(fā)展服務(wù),國家在修訂《中華人民共和國個人所得稅法》之后,發(fā)布了《個人所得稅專項附加扣除暫行辦法》,明確專項附加扣除就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈養(yǎng)老人等費用,并公布了相應的定額扣除標準,決定自201911日起施行,某機關(guān)為了調(diào)查內(nèi)部職員對新個稅方案的滿意程度與年齡的關(guān)系,通過問卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:

40歲及以下

40歲以上

合計

基本滿意

15

10

25

很滿意

25

30

55

合計

40

40

80

1)根據(jù)列聯(lián)表,能否有85%的把握認為滿意程度與年齡有關(guān)?

2)若已經(jīng)在滿意程度為基本滿意的職員中用分層抽樣的方式選取了5名職員,現(xiàn)從這5名職員中隨機選取3名進行面談求面談的職員中恰有2名年齡在40歲及以下的概率.

附:,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為拋物線的焦點,過點的直線與拋物線相交于不同的兩點,拋物線兩點處的切線分別是,且相交于點.設(shè),則的值是___(結(jié)果用表示).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知過定點且與直線垂直的直線與軸、軸分別交于點,點滿足.

1)若以原點為圓心的圓有唯一公共點,求圓的軌跡方程;

2)求能覆蓋的最小圓的面積;

3)在(1)的條件下,點在直線上,圓上總存在兩個不同的點使得為坐標原點),求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知直三棱柱中,,,的中點,上一點,且.

1)證明:平面;

2)求二面角余弦值的大小.

查看答案和解析>>

同步練習冊答案