科目: 來源: 題型:
【題目】如圖是某地區(qū)2012年至2018年生活垃圾無害化處理量(單位:萬噸)的折線圖.
注:年份代碼分別表示對應(yīng)年份.
(1)由折線圖看出,可用線性回歸模型擬合與的關(guān)系,請用相關(guān)系數(shù)(線性相關(guān)較強(qiáng))加以說明;
(2)建立與的回歸方程(系數(shù)精確到0.01),預(yù)測2019年該區(qū)生活垃圾無害化處理量.
(參考數(shù)據(jù)),,,,,,.
(參考公式)相關(guān)系數(shù),在回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目: 來源: 題型:
【題目】在中,已知,M是BC的中點(diǎn).
(1)若,求向量與向量的夾角的余弦值;
(2)若O是線段AM上任意一點(diǎn),且,求的最小值;
(3)若點(diǎn)P是邊BC上的一點(diǎn),且,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,長度為2的線段EF的兩端點(diǎn)E、F分別在兩坐標(biāo)軸上運(yùn)動.
(1)求線段EF的中點(diǎn)G的軌跡C的方程;
(2)設(shè)軌跡C與軸交于兩點(diǎn),P是軌跡C上異于的任意一點(diǎn),直線交直線于M點(diǎn),直線交直線于N點(diǎn),求證:以MN為直徑的圓C總過定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三個元素,分別作為一個三位數(shù)的個位數(shù),十位數(shù)和百位數(shù),記這個三位數(shù)為a,現(xiàn)將組成a的三個數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a)(例如a=219,則I(a)=129,D(a)=921),閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,任意輸入一個a,則輸出b的值為( )
A. 792 B. 693 C. 594 D. 495
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:
則下列結(jié)論正確的是
A. 與2015年相比,2018年一本達(dá)線人數(shù)減少
B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了倍
C. 2015年與2018年藝體達(dá)線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),(為常數(shù),且).
(1)若當(dāng)時,函數(shù)與的圖象有且只要一個交點(diǎn),試確定自然數(shù)的值,使得(參考數(shù)值,,,);
(2)當(dāng)時,證明:(其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點(diǎn)A(2,4)
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;
(3)設(shè)點(diǎn)T(t,o)滿足:存在圓M上的兩點(diǎn)P和Q,使得,求實(shí)數(shù)t的取值范圍。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線以為焦點(diǎn),且過點(diǎn)
(1)求雙曲線與其漸近線的方程
(2)若斜率為1的直線與雙曲線相交于兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求直線的方程
查看答案和解析>>
科目: 來源: 題型:
【題目】橢圓C:過點(diǎn)M(2,0),且右焦點(diǎn)為F(1,0),過F的直線l與橢圓C相交于A、B兩點(diǎn).設(shè)點(diǎn)P(4,3),記PA、PB的斜率分別為k1和k2.
(1)求橢圓C的方程;
(2)如果直線l的斜率等于-1,求出k1k2的值;
(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓()的左焦點(diǎn)為,點(diǎn)為橢圓上任意一點(diǎn),且的最小值為,離心率為.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),若動直線與橢圓交于不同兩點(diǎn)、(、都在軸上方),且.
(i)當(dāng)為橢圓與軸正半軸的交點(diǎn)時,求直線的方程;
(ii)對于動直線,是否存在一個定點(diǎn),無論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com