科目: 來源: 題型:
【題目】如圖,動點P從單位正方形ABCD頂點A開始,順次經(jīng)B、C、D繞邊界一周,當(dāng) 表示點P的行程, 表示PA之長時,求y關(guān)于x的解析式,并求 的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),函數(shù)是奇函數(shù).
(1)判斷函數(shù)的奇偶性,并求實數(shù)的值;
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)設(shè),若存在,使不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某林業(yè)部門為了保證植樹造林的樹苗質(zhì)量,對甲、乙兩家供應(yīng)的樹苗進行根部直徑檢測,現(xiàn)從兩家供應(yīng)的樹苗中各隨機抽取10株樹苗檢測,測得根部直徑如下(單位:mm):
甲 | 27 | 11 | 21 | 10 | 19 | 09 | 22 | 13 | 15 | 23 |
乙 | 15 | 20 | 27 | 17 | 21 | 14 | 16 | 18 | 24 | 18 |
(1)畫出甲、乙兩家抽取的10株樹苗根部直徑的莖葉圖,并根據(jù)莖葉圖對甲、乙兩家樹苗進行比較,寫出兩個統(tǒng)計結(jié)論;
(2)設(shè)抽測的10株乙家樹苗根部直徑的平均值為,將這10株樹苗直徑依次輸入程序框圖中,求輸出的S的值,并說明其統(tǒng)計學(xué)的意義.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,曲線是以原點O為中心、為焦點的橢圓的一部分,曲線是以O為頂點、為焦點的拋物線的一部分,A是曲線和的交點且為鈍角,若,.
(1)求曲線和的方程;
(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問是否為定值?若是求出定值;若不是說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某班主任為了對本班學(xué)生的月考成績進行分析,從全班40名同學(xué)中隨機抽取一個容量為6的樣本進行分析.隨機抽取6位同學(xué)的數(shù)學(xué)、物理分數(shù)對應(yīng)如表:
學(xué)生編號 | 1 | 2 | 3 | 4 | 5 | 6 |
數(shù)學(xué)分數(shù)x | 60 | 70 | 80 | 85 | 90 | 95 |
物理分數(shù)y | 72 | 80 | 88 | 90 | 85 | 95 |
(1)根據(jù)上表數(shù)據(jù)用散點圖說明物理成績y與數(shù)學(xué)成績x之間是否具有線性相關(guān)性?
(2)如果具有線性相關(guān)性,求出線性回歸方程(系數(shù)精確到0.1);如果不具有線性相關(guān)性,請說明理由.
(3)如果班里的某位同學(xué)數(shù)學(xué)成績?yōu)?0,請預(yù)測這位同學(xué)的物理成績。
(附)
查看答案和解析>>
科目: 來源: 題型:
【題目】語音交互是人工智能的方向之一,現(xiàn)在市場上流行多種可實現(xiàn)語音交互的智能音箱,它們可以通過語音交互滿足人們的部分需求.經(jīng)市場調(diào)查,某種新型智能音箱的廣告費支出x(萬元)與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):
x | 1 | 4 | 5 | 6 | 9 |
y | 20 | 35 | 50 | 65 | 80 |
(1)求y關(guān)于x的線性回歸方程(數(shù)據(jù)精確到0.01);
(2)利用(1)中的回歸方程,預(yù)測廣告費支出10萬元時的銷售額.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校因為寒假延期開學(xué),根據(jù)教育部停課不停學(xué)的指示,該學(xué)校組織學(xué)生線上教學(xué),高一年級在線上教學(xué)一個月后,為了了解線上教學(xué)的效果,在線上組織了數(shù)學(xué)學(xué)科考試,隨機抽取50名學(xué)生的成績并制成頻率分布直方圖如圖所示.
(1)求m的值,并估計高一年級所有學(xué)生數(shù)學(xué)成績在分的學(xué)生所占的百分比;
(2)分別估計這50名學(xué)生數(shù)學(xué)成績的平均數(shù)和中位數(shù).(同一組中的數(shù)據(jù)以該組區(qū)間的中點值作代表,結(jié)果精確到0.1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com