科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,過橢圓右焦點作兩條互相垂直的弦與.當(dāng)直線斜率為0時,.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ae2x+(a﹣2)ex﹣x.(12分)
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個零點,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T.其
范圍為[0,10],分別有五個級別:T∈[0,2)暢通;T∈[2,4)基本暢通; T∈[4,6)輕度擁堵; T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶?/span>,晚高峰時段(T≥2),從某市交通指揮中心選取了市區(qū)20個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的部分直方圖如圖所示.
(1)請補全直方圖,并求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶侣范胃饔卸嗌賯?
(2)用分層抽樣的方法從交通指數(shù)在[4,6),[6,8),[8,l0]的路段中共抽取6個路段,求依次抽取的三個級別路段的個數(shù);
(3)從(2)中抽出的6個路段中任取2個,求至少一個路段為輕度擁堵的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】有下列命題:
①“”是“”的充要條件;
②“”是“一元二次不等式的解集為R”的充要條件;
③“”是“直線平行于直線”的充分不必要條件;
④“”是“”的必要不充分條件.
其中真命題的序號為____________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四面體中, 是正三角形, 是直角三角形, ,.
(1)證明:平面平面;
(2)過的平面交于點,若平面把四面體分成體積相等的兩部分,求二面角的大小。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線.
(1)若直線不經(jīng)過第四象限,求的取值范圍;
(2)若直線交軸負(fù)半軸于,交軸正半軸于,求的面積的最小值并求此時直線的方程;
(3)已知點,若點到直線的距離為,求的最大值并求此時直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4-4 , 坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)).(10分)
(1)若a=﹣1,求C與l的交點坐標(biāo);
(2)若C上的點到l距離的最大值為 ,求a.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四棱錐S-ABCD中,底面ABCD是邊長為1的正方形,SD底面ABCD,SD=2,其中分別是的中點,是上的一個動點.
(1)當(dāng)點落在什么位置時,∥平面,證明你的結(jié)論;
(2)求三棱錐的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)當(dāng)a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將菱形ABCD沿對角線BD折起,使得C點至C′,E點在線段AC′上,若二面角A﹣BD﹣E與二面角E﹣BD﹣C′的大小分別為15°和30°,則__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com