【題目】如圖,四面體中, 是正三角形, 是直角三角形, ,.

(1)證明:平面平面;

(2)的平面交于點,若平面把四面體分成體積相等的兩部分,求二面角的大小。

【答案】(1)證明見解析;(2)

【解析】

(1)如圖所示,取AC的中點O,連接BO,OD.ABC是等邊三角形,可得OBAC.由已知可得:△ABD≌△CBD,AD=CD.△ACD是直角三角形,可得AC是斜邊,ADC=90°.可得DO=AC.利用DO2+BO2=AB2=BD2.可得OB⊥OD.利用線面面面垂直的判定與性質(zhì)定理即可證明;

(2)由平面把四面體分成體積相等的兩部分,明確中點, 易知二面角的平面角為.

1證明:如圖所示,取AC的中點O,連接BO,OD.

∵△ABC是等邊三角形,∴OB⊥AC.

ABD與CBD中,AB=BD=BC,∠ABD=∠CBD,

∴△ABD≌△CBD,∴AD=CD.

∵△ACD是直角三角形,

AC是斜邊,∴∠ADC=90°.

∴DO=AC.

∴DO2+BO2=AB2=BD2

∴∠BOD=90°.

∴OB⊥OD.

又DO∩AC=O,∴OB⊥平面ACD.

又OB平面ABC,

平面ACD平面ABC.

2∵平面把四面體分成體積相等的兩部分,

,∴.

中點,

由(1)知為直角三角形,則

,

為等邊三角形,

由(1)知則AE=CE,

所以,

,

則二面角的平面角為,且二面角的大小為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖所示,ABCD是邊長為3的正方形,DE平面ABCD,AFDE,DE=3AF,BE與平面ABCD所成的角為60°.

(1)求證:AC平面BDE;

(2)求二面角F-BE-D的余弦值;

(3)設(shè)點M是線段BD上一個動點,試確定點M的位置,使得AM平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線與橢圓交于兩點,記的面積為

(1)當(dāng)時,求的最大值;

(2)當(dāng)時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過橢圓的右焦點且與橢圓交于兩點, 中點, 的斜率為.

(1)求橢圓的方程;

(2)設(shè)是橢圓的動弦,且其斜率為1,問橢圓上是否存在定點,使得直線的斜率滿足?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將菱形ABCD沿對角線BD折起,使得C點至C′,E點在線段AC′上,若二面角A﹣BD﹣E與二面角E﹣BD﹣C′的大小分別為15°和30°,則__

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:關(guān)于x的方程x2ax20無實根,命題q:函數(shù)f(x)logax(0,+)上單調(diào)遞增,若pq為假命題,pq真命題,求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐S﹣ABC的所有頂點都在球O的球面上,SC是球O的直徑,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱錐S﹣ABC的體積為9,則球O的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= (a>0,a≠1)的定義域和值域都是[0,1],則loga +loga =(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案