【題目】[選修4-5:不等式選講]
已知函數f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)當a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍.
【答案】
(1)
解:當a=1時,f(x)=﹣x2+x+4,是開口向下,對稱軸為x= 的二次函數,
g(x)=|x+1|+|x﹣1|= ,
當x∈(1,+∞)時,令﹣x2+x+4=2x,解得x= ,g(x)在(1,+∞)上單調遞增,f(x)在(1,+∞)上單調遞減,∴此時f(x)≥g(x)的解集為(1, ];
當x∈[﹣1,1]時,g(x)=2,f(x)≥f(﹣1)=2.
當x∈(﹣∞,﹣1)時,g(x)單調遞減,f(x)單調遞增,且g(﹣1)=f(﹣1)=2.
綜上所述,f(x)≥g(x)的解集為[﹣1, ];
(2)
依題意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,則只需 ,解得﹣1≤a≤1,
故a的取值范圍是[﹣1,1].
【解析】(1.)當a=1時,f(x)=﹣x2+x+4,g(x)=|x+1|+|x﹣1|= ,分x>1、x∈[﹣1,1]、x∈(﹣∞,﹣1)三類討論,結合g(x)與f(x)的單調性質即可求得f(x)≥g(x)的解集為[﹣1, ];
(2.)依題意得:﹣x2+ax+4≥2在[﹣1,1]恒成立x2﹣ax﹣2≤0在[﹣1,1]恒成立,只需 ,解之即可得a的取值范圍.
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l1的參數方程為 ,(t為參數),直線l2的參數方程為 ,(m為參數).設l1與l2的交點為P,當k變化時,P的軌跡為曲線C.
(Ⅰ)寫出C的普通方程;
(Ⅱ)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點,求M的極徑.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線與函數相鄰兩支曲線的交點的橫坐標分別為,,且有,假設函數的兩個不同的零點分別為,,若在區(qū)間內存在兩個不同的實數,,與,調整順序后,構成等差數列,則的值為( )
A. 或B. 或
C. 或或不存在D. 或或不存在
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市為了解游客人數的變化規(guī)律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.
根據該折線圖,下列結論錯誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產線的生產過程,檢驗員每天從該生產線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據長期生產經驗,可以認為這條生產線正常狀態(tài)下生產的零件的尺寸服從正態(tài)分布N(μ,σ2).(12分)
(1)假設生產狀態(tài)正常,記X表示一天內抽取的16個零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件數,求P(X≥1)及X的數學期望;
(2)一天內抽檢零件中,如果出現了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就認為這條生產線在這一天的生產過程可能出現了異常情況,需對當天的生產過程進行檢查.
(。┰囌f明上述監(jiān)控生產過程方法的合理性;
(ⅱ)下面是檢驗員在一天內抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經計算得 = =9.97,s= = ≈0.212,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
用樣本平均數 作為μ的估計值 ,用樣本標準差s作為σ的估計值 ,利用估計值判斷是否需對當天的生產過程進行檢查?剔除( ﹣3 +3 )之外的數據,用剩下的數據估計μ和σ(精確到0.01).
附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓N:x2+(y+ )2=36,P是圓N上的點,點Q在線段NP上,且有點D(0, )和DP上的點M,滿足 =2 , =0.
(1)當P在圓上運動時,求點Q的軌跡方程;
(2)若斜率為 的直線l與(1)中所求Q的軌跡交于不同兩點A、B,又點C( ,2),求△ABC面積最大值時對應的直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com