科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex , g(x)=kx+1.
(I)求函數(shù)y=f(x)﹣(x+1)的最小值;
(II)證明:當(dāng)k>1時,存在x0>0,使對于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在實數(shù)m使對任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓錐曲線 E: .
(I)求曲線 E的離心率及標(biāo)準(zhǔn)方程;
(II)設(shè) M(x0 , y0)是曲線 E上的任意一點,過原點作⊙M:(x﹣x0)2+(y﹣y0)2=8的兩條切線,分別交曲線 E于點 P、Q.
①若直線OP,OQ的斜率存在分別為k1 , k2 , 求證:k1k2=﹣ ;
②試問OP2+OQ2是否為定值.若是求出這個定值,若不是請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:()的右焦點為,且橢圓上一點到其兩焦點,的距離之和為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線:()與橢圓交于不同兩點,,且,若點滿足,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在斜三棱柱ABC﹣A1B1C1中,底面ABC是正三角形,E是AB中點,A1E⊥平面ABC.
(I)證明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求點B到平面ACC1A1的距離;
②求直線CB1與平面ACC1A1所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖ABCD是平面四邊形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的長;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某大學(xué)城校區(qū)與本部校區(qū)之間的駕車單程所需時間為,只與道路暢通狀況有關(guān),對其容量為500的樣本進行統(tǒng)計,結(jié)果如下:
(分鐘) | 25 | 30 | 35 | 40 |
頻數(shù)(次) | 100 | 150 | 200 | 50 |
以這500次駕車單程所需時間的頻率代替某人1次駕車單程所需時間的概率.
(1)求的分布列與;
(2)某天有3位教師獨自駕車從大學(xué)城校區(qū)返回本部校區(qū),記表示這3位教師中駕車所用時間少于的人數(shù),求的分布列與;
(3)下周某天張老師將駕車從大學(xué)城校區(qū)出發(fā),前往本部校區(qū)做一個50分鐘的講座,結(jié)束后立即返回大學(xué)城校區(qū),求張老師從離開大學(xué)城校區(qū)到返回大學(xué)城校區(qū)共用時間不超過120分鐘的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】給出以下四個命題:
①若ab≤0,則a≤0或b≤0;②若a>b,則am2>bm2;③在△ABC中,若sinA=sinB,則A=B;④在一元二次方程ax2+bx+c=0中,若b2-4ac<0,則方程有實數(shù)根.其中原命題、逆命題、否命題、逆否命題全都是真命題的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)拋物線的準(zhǔn)線與軸交于,拋物線的焦點,以為焦點,離心率的橢圓與拋物線的一個交點為;自引直線交拋物線于兩個不同的點,設(shè).
(1)求拋物線的方程及橢圓的方程;
(2)若,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com