【題目】在斜三棱柱ABC﹣A1B1C1中,底面ABC是正三角形,E是AB中點,A1E⊥平面ABC.
(I)證明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求點B到平面ACC1A1的距離;
②求直線CB1與平面ACC1A1所成角的正弦值.
【答案】解:(I)證明:設AC1與A1C交于F點,連接EF,
∵E,F(xiàn)分別是線段AB,AC1的中點,
∴EF∥BC1 , 又EF平面 A1EC,BC1平面A1EC
故 BC1∥平面A1EC,
(II)①在正三角形A BC中,過E作E H⊥AC于H,連接A1H
顯然AC⊥平面A1EH,
∵AC平面ACC1A1
∴平面A1EH⊥平面ACC1A1 , 且兩個平面的交線為A1H
過E作EG⊥A1H于G,則EG⊥平面ACC1A1
在Rt△AA1B中,由已知易得A1E=1,在正三角形ABC中,
則在Rt△A1E H中,
即點E到平面ACC1A1的距離為 ,
∵E是線段AB中點,
∴點B到平面ACC1A1的距離 ,
②延長EB至R點,使EB=BR=1,連接RC,
∴B1R∥A1E,則B1R⊥平面ARC,即有B1R⊥RC
在△BRC中易得 ,
∴
設直線B1C與平面ACC1A1所成角為φ
則 .
【解析】(Ⅰ)根據(jù)線面平行的判定定理進行證明即可.(Ⅱ)根據(jù)點到平面的距離公式以及線面角的定義,結(jié)合三角形的邊角關系進行求解.
【考點精析】根據(jù)題目的已知條件,利用直線與平面平行的判定和空間角的異面直線所成的角的相關知識可以得到問題的答案,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則.
科目:高中數(shù)學 來源: 題型:
【題目】橢圓C: =1(a>b>0)的中心在原點,焦點在x軸上,焦距為2,且與橢圓x2+ =1有相同離心率,直線l:y=kx+m與橢圓C交于不同的A,B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點Q,滿足 ,(O為坐標原點),求實數(shù)λ取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某測試中,卷面滿分為100分,60分為及格,為了調(diào)查午休對本次測試前兩個月復習效果的影響,特對復習中進行午休和不進行午休的考生進行了測試成績的統(tǒng)計,數(shù)據(jù)如下表所示:
分數(shù)段 | 29~ 40 | 41~ 50 | 51~ 60 | 61~ 70 | 71~ 80 | 81~ 90 | 91~ 100 |
午休考 生人數(shù) | 23 | 47 | 30 | 21 | 14 | 31 | 14 |
不午休 考生人數(shù) | 17 | 51 | 67 | 15 | 30 | 17 | 3 |
(1)根據(jù)上述表格完成列聯(lián)表:
及格人數(shù) | 不及格人數(shù) | 總計 | |
午休 | |||
不午休 | |||
總計 |
(2)根據(jù)列聯(lián)表可以得出什么樣的結(jié)論?對今后的復習有什么指導意義?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解學生寒假閱讀名著的情況,一名教師對某班級的所有學生進行了調(diào)查,調(diào)查結(jié)果如下表:
本數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
男生 | 0 | 1 | 4 | 3 | 2 | 2 |
女生 | 0 | 0 | 1 | 3 | 3 | 1 |
(I)從這班學生中任選一名男生,一名女生,求這兩名學生閱讀名著本數(shù)之和為4的概率;
(II)若從閱讀名著不少于4本的學生中任選4人,設選到的男學生人數(shù)為 X,求隨機變量 X的分布列和數(shù)學期望;
(III)試判斷男學生閱讀名著本數(shù)的方差 與女學生閱讀名著本數(shù)的方差 的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在斜三棱柱ABC﹣A1B1C1中,底面ABC是正三角形,E是AB中點,A1E⊥平面ABC.
(I)證明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求點B到平面ACC1A1的距離;
②求直線CB1與平面ACC1A1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四面體ABCD中,AB、BC、BD兩兩垂直,AB=BC=BD=4,E、F分別為棱BC、AD的中點.
(1)求異面直線AB與EF所成角的余弦值;
(2)求E到平面ACD的距離;
(3)求EF與平面ACD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是( )
A.f(x)=x2
B.f(x)=sinx
C.f(x)=ex
D.f(x)=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com