【題目】設(shè)拋物線的準線與軸交于,拋物線的焦點,以為焦點,離心率的橢圓與拋物線的一個交點為;自引直線交拋物線于兩個不同的點,設(shè).
(1)求拋物線的方程及橢圓的方程;
(2)若,求的取值范圍.
【答案】(1);(2)
【解析】
(1)設(shè)橢圓的方程為,運用離心率公式和點滿足橢圓方程,解方程可得,進而得到橢圓的方程;再由焦點坐標可得,進而得到拋物線的方程;
(2)記,運用向量共線的坐標表示和聯(lián)立直線方程和拋物線方程,運用韋達定理和弦長公式,及基本不等式,即可得到所求范圍.
(1)設(shè)橢圓的標準方程為,由題意得,解得
∴橢圓的方程為
∴點的坐標為,∴,∴拋物線的方程是
(2)由題意得直線的斜率存在,設(shè)其方程為,
由消去整理得(*)∵直線與拋物線交于兩點,∴,設(shè),則①,②,
∵,∴∴,③
由①②③消去得.
∴ ,即 ,將代入上式得, ,∵在上單調(diào)遞減,
∴,即,∴ ,
∴,即的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于莖葉圖的說法,結(jié)論錯誤的一個是( )
A. 甲的極差是29 B. 甲的中位數(shù)是25
C. 乙的眾數(shù)是21 D. 甲的平均數(shù)比乙的大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;
(Ⅱ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機變量ξ的分布列與數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是線段EF的中點.
(1)求證AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大。
(3)試在線段AC上一點P,使得PF與CD所成的角是60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在上的函數(shù)滿足:對任意的,當時,都有,則稱是“非減函數(shù)”.
(1)若是“非減函數(shù)”,求的取值范圍;
(2)若為周期函數(shù),且為“非減函數(shù)”,證明是常值函數(shù);
(3)設(shè)恒大于零,是定義在R上、恒大于零的周期函數(shù),是的最大值。函數(shù)。證明:“是周期函數(shù)”的充要條件“是常值函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面為矩形,且,為的中點.
(1)過點作一條射線,使得,求證:平面 平面;
(2)求二面角的余弦值的絕對值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=k3n﹣m,且a1=3,a3=27.
(I)求證:數(shù)列{an}是等比數(shù)列;
(II)若anbn=log3an+1 , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下表為函數(shù)部分自変量取值及其對應(yīng)函數(shù)值,為了便于研究,相關(guān)函數(shù)值取非整數(shù)值時,取值精確到0.01.
0.61 | -0.59 | -0.56 | -0.35 | 0 | 0.26 | 0.42 | 1.57 | 3.27 | |
0.07 | 0.02 | -0.03 | -0.22 | 0 | 0.21 | 0.20 | -10.04 | -101.63 |
據(jù)表中數(shù)據(jù),研究該函數(shù)的一些性質(zhì);
(1)判斷函數(shù)的奇偶性,并證明;
(2)判斷函數(shù)在區(qū)間[0.55,0.6]上是否存在零點,并說明理由;
(3)判斷的正負,并證明函數(shù)在上是單調(diào)遞減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有如下幾個結(jié)論: ①相關(guān)指數(shù)R2越大,說明殘差平方和越小,模型的擬合效果越好; ②回歸直線方程:,一定過樣本點的中心:③殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適; ④在獨立性檢驗中,若公式,中的|ad-bc|的值越大,說明“兩個分類變量有關(guān)系”的可能性越強.其中正確結(jié)論的個數(shù)有( 。﹤.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com