科目: 來源: 題型:
【題目】已知點F(1,0),點A是直線l1:x=﹣1上的動點,過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點P.
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)若點M,N是直線l1上兩個不同的點,且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某屆奧運會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三 年級一班至六班進(jìn)行了“本屆奧運會中國隊表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),從被調(diào)查的學(xué)生中隨機(jī)抽取了50人,具體的調(diào)查結(jié)果如表:
班號 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
頻數(shù) | 5 | 9 | 11 | 9 | 7 | 9 |
滿意人數(shù) | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年級全體學(xué)生中隨機(jī)抽取一名學(xué)生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;
(2)若從一班至二班的調(diào)查對象中隨機(jī)選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對“本屆奧運會中國隊表現(xiàn)”不滿意的人數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四邊形ABCD中,對角線AC,BD垂直相交于點O,且OA=OB=OD=4,OC=3. 將△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小為90°(如圖).已知Q為EO的中點,點P在線段AB上,且 .
(Ⅰ)證明:直線PQ∥平面ADE;
(Ⅱ)求直線BD與平面ADE所成角θ的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+2|x+b|(a>0,b>0)的最小值為1.
(1)求a+b的值;
(2)若 恒成立,求實數(shù)m的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),以O(shè)為極點,x軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)若直線l的極坐標(biāo)方程是 ,射線 與圓C的交點為O、P,與直線l的交點為Q.求線段PQ的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點,求實數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時,方程f(1﹣x)= 有實根,求實數(shù)b的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】一個口袋里裝有個白球和個紅球,從口袋中任取個球.
(1)共有多少種不同的取法?
(2)其中恰有一個紅球,共有多少種不同的取法?
(3)其中不含紅球,共有多少種不同的取法?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點F(1,0),點A是直線l1:x=﹣1上的動點,過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點P.
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)若點M,N是直線l1上兩個不同的點,且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個題目:“今有蒲生一日,長三尺;莞生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”.其大意是“今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減其一半,莞的生長逐日增加一倍.問幾日蒲、莞長度相等?”若本題改為求當(dāng)蒲、莞長度相等時,莞的長度為( )
A. 4尺B. 5尺C. 6尺D. 7尺
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com