相關習題
 0  259577  259585  259591  259595  259601  259603  259607  259613  259615  259621  259627  259631  259633  259637  259643  259645  259651  259655  259657  259661  259663  259667  259669  259671  259672  259673  259675  259676  259677  259679  259681  259685  259687  259691  259693  259697  259703  259705  259711  259715  259717  259721  259727  259733  259735  259741  259745  259747  259753  259757  259763  259771  266669 

科目: 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側面BB1C1C為菱形,AB⊥B1C.

(1)證明:AC=AB1;
(2)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】從某企業(yè)生產的某種產品中抽取500件,測量這些產品的一項質量指標值,由測量結果得如下頻率分布直方圖:

(1)求這500件產品質量指標值的樣本平均數 和樣本方差s2(同一組中數據用該組區(qū)間的中點值作代表);
(2)由直方圖可以認為,這種產品的質量指標值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數 ,σ2近似為樣本方差s2
(i)利用該正態(tài)分布,求P(187.8<Z<212.2);
(ii)某用戶從該企業(yè)購買了100件這種產品,記X表示這100件產品中質量指標值位于區(qū)間(187.8,212.2)的產品件數,利用(i)的結果,求EX.
附: ≈12.2.
若Z~N(μ,σ2)則P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目: 來源: 題型:

【題目】某地區(qū)有小學21所,中學14所,大學7所,現采取分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查。

I)求應從小學、中學、大學中分別抽取的學校數目。

II)若從抽取的6所學校中隨機抽取2所學校做進一步數據分析,

1)列出所有可能的抽取結果;

2)求抽取的2所學校均為小學的概率。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點p(1,m)在拋物線上,F為焦點,且.

(1)求拋物線C的方程;

(2)過點T(4,0)的直線交拋物線CA,B兩點,O為坐標原點,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知某運動員每次投籃命中的概率低于,現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果,經隨機模擬產生了如下20組隨機數:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據此估計,該運動員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi,yi)(i=12,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是

A. yx具有正的線性相關關系

B. 回歸直線過樣本點的中心(,

C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , a1=1,an≠0,anan+1=λSn﹣1,其中λ為常數.
(1)證明:an+2﹣an
(2)是否存在λ,使得{an}為等差數列?并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知標準方程下的橢圓的焦點在軸上,且經過點,它的一個焦點恰好與拋物線的焦點重合.橢圓的上頂點為過點的直線交橢圓于兩點,連接、,記直線的斜率分別為.

(1)求橢圓的標準方程;

(2)求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,是平行四邊形,的中點,且有,現以為折痕,將折起,使得點到達點的位置,且

1)證明:平面;

2)若四棱錐的體積為,求四棱錐的側面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為拋物線上一個動點, 為圓上一個動點,那么點到點的距離與點到拋物線的準線距離之和的最小值是

A. B. C. D.

查看答案和解析>>

同步練習冊答案