科目: 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實(shí)數(shù)a的取值范圍為( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
科目: 來源: 題型:
【題目】已知兩個(gè)不相等的非零向量 , ,兩組向量 和 均由2個(gè) 和3個(gè) 排列而成,記S= ,Smin表示S所有可能取值中的最小值,則下列命題中
1)S有5個(gè)不同的值;(2)若 ⊥ 則Smin與| |無關(guān);(3)若 ∥ 則Smin與| |無關(guān);(4)若| |>4| |,則Smin>0;(5)若| |=2| |,Smin=8| |2 , 則 與 的夾角為 .正確的是( )
A.(1)(2)
B.(2)(4)
C.(3)(5)
D.(1)(4)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知命題p:對(duì)數(shù)有意義;命題q:實(shí)數(shù)t滿足不等式.
(Ⅰ)若命題p為真,求實(shí)數(shù)的取值范圍;
(Ⅱ)若命題p是命題q的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)的圖像可以由y=cos2x的圖像先縱坐標(biāo)不變橫坐標(biāo)伸長到原來的2倍,再橫坐標(biāo)不變縱坐標(biāo)伸長到原來的2倍,最后向右平移個(gè)單位而得到.
⑴求f(x)的解析式與最小正周期;
⑵求f(x)在x∈(0,π)上的值域與單調(diào)性.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù),其中是實(shí)數(shù).
(l)若 ,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若為函數(shù)圖像上一點(diǎn),且直線與相切于點(diǎn),其中為坐標(biāo)原點(diǎn),求的值;
(3) 設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,若在定義域內(nèi)恒成立,則稱函數(shù)具有某種性質(zhì),簡稱“函數(shù)”.當(dāng)時(shí),試問函數(shù)是否為“函數(shù)”?若是,請(qǐng)求出此時(shí)切點(diǎn)的橫坐標(biāo);若不是,清說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),且與橢圓 有相同的焦點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線交于點(diǎn),問:以線段為直徑的圓是否經(jīng)過一定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞減區(qū)間為( )
A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+(b﹣1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且對(duì)任意x∈R,都有f(2﹣x)=f(2+x),求f(x)的解析式;
(2)已知x1 , x2為函數(shù)f(x)的兩個(gè)零點(diǎn),且x2﹣x1=2,當(dāng)x∈(x1 , x2)時(shí),g(x)=﹣f(x)+2(x2﹣x)的最大值為,當(dāng)a≥2時(shí),求h(a)的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一個(gè)半徑為1的半球材料中截取兩個(gè)高度均為的圓柱,其軸截面如圖所示.設(shè)兩個(gè)圓柱體積之和為.
(1)求的表達(dá)式,并寫出的取值范圍;
(2)求兩個(gè)圓柱體積之和的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com