相關習題
 0  212603  212611  212617  212621  212627  212629  212633  212639  212641  212647  212653  212657  212659  212663  212669  212671  212677  212681  212683  212687  212689  212693  212695  212697  212698  212699  212701  212702  212703  212705  212707  212711  212713  212717  212719  212723  212729  212731  212737  212741  212743  212747  212753  212759  212761  212767  212771  212773  212779  212783  212789  212797  266669 

科目: 來源: 題型:

在一條筆直的工藝流水線上有n個工作臺,將工藝流水線用如圖所示的數軸表示,各工作臺的坐標分別為x1,x2,…,xn,每個工作臺上有若干名工人.現要在流水線上建一個零件供應站,使得各工作臺上的所有工人到供應站的距離之和最短.

(Ⅰ)若n=2,每個工作臺上只有一名工人,試確定供應站的位置;
(Ⅱ)若n=5,工作臺從左到右的人數依次為3,2,1,2,2,試確定供應站的位置,并求所有工人到供應站的距離之和的最小值.

查看答案和解析>>

科目: 來源: 題型:

已知函數f(x)=2sin(π-x)•cosx+sin2x-cos2x,x∈R.
(Ⅰ)求f(
π
2
)的值及函數f(x)的最小正周期;
(Ⅱ)求函數f(x)在[0,π]上的單調減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

設數列{an}的前n項和為Sn,且S
 
2
n
-2Sn-an•Sn+1=0,n∈N*
(Ⅰ)求Sn與Sn-1(n≥2)的關系式,并證明數列{
1
Sn-1
}是等差數列;
(Ⅱ)設bn=an•Sn,數列{bn}的前n項和為Tn,求證:
n
2(n+2)
<Tn
2
3

查看答案和解析>>

科目: 來源: 題型:

已知橢圓5x2+9y2=45,橢圓的右焦點為F,
(1)求過點F且斜率為1的直線被橢圓截得的弦長;
(2)判斷點A(1,1)與橢圓的位置關系,并求以A為中點橢圓的弦所在的直線方程.

查看答案和解析>>

科目: 來源: 題型:

已知拋物線C:x2=2py(p>0)上一點A(m,4)到其焦點F的距離為
17
4

(1)求P與m的值;
(2)若直線l過焦點F交拋物線于P,Q兩點,且|PQ|=5,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

求下列函數的定義域和值域:
(1)y=
8
x
;
(2)y=-4x+5;
(3)y=x2-6x+7.

查看答案和解析>>

科目: 來源: 題型:

設點P(x,y)是曲線C上任意一點,若點P到定點F(c,0)的距離與到定直線l:x=
a2
c
的距離的比等于
c
a
(其中a>c>0).
(1)求曲線C的方程,并指出其軌跡類型;
(2)當a=2,c=
3
時,問是否存在經過點(0,2)的直線m與曲線C相交于P,Q兩點,使原點O位于以線段PQ為直徑的圓上?若存在,請求出直線m的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)是定義在R上的不恒為0的函數,且對于任意的a,b∈R,都滿足f(ab)=af(b)+bf(a).
(1)求f(0)、f(1)的值;
(2)判斷f(x)的奇偶性,并證明你的結論;
(3)(文科)若f(2)=2,un=f(2n)(n∈N*),求證:un+1>un(n∈N*).
(3)(理科)若f(2)=2,un=
f(2-n)
n
(n∈N*)
,求數列un的前n項和Sn

查看答案和解析>>

科目: 來源: 題型:

某旅行社為調查市民喜歡“人文景觀”景點是否與年齡有關,隨機抽取了55名市民,得到數據如下表:
喜歡 不喜歡 合計
大于40歲 20 5 25
20歲至40歲 10 20 30
合計 30 25 55
(Ⅰ)判斷是否有99.5%的把握認為喜歡“人文景觀”景點與年齡有關?
(Ⅱ)用分層抽樣的方法從喜歡“人文景觀”景點的市民中隨機抽取6人作進一步調查,將這6位市民作為一個樣本,從中任選2人,求恰有1位“大于40歲”的市民和1位“20歲至40歲”的市民的概率.
下面的臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目: 來源: 題型:

動點P(x,y)到定點F(1,0)與到定直線,x=2的距離之比為 
2
2

(Ⅰ)求P的軌跡方程;
(Ⅱ)過點F(1,0)的直線l(與x軸不重合)與(Ⅰ)中軌跡交于兩點M、N.探究是否存在一定點E(t,0),使得x軸上的任意一點(異于點E、F)到直線EM、EN的距離相等?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案