相關(guān)習(xí)題
 0  211404  211412  211418  211422  211428  211430  211434  211440  211442  211448  211454  211458  211460  211464  211470  211472  211478  211482  211484  211488  211490  211494  211496  211498  211499  211500  211502  211503  211504  211506  211508  211512  211514  211518  211520  211524  211530  211532  211538  211542  211544  211548  211554  211560  211562  211568  211572  211574  211580  211584  211590  211598  266669 

科目: 來(lái)源: 題型:

如圖,在直角梯形ABCD中,AB=AD=2,把此梯形繞其直角邊AD旋轉(zhuǎn)120°得到如圖所示的幾何體,點(diǎn)G是∠BDF平分線上任意一點(diǎn)(異于點(diǎn)D),點(diǎn)M是弧
BF
的中點(diǎn).
(Ⅰ)求證:BF⊥AG;
(Ⅱ)求二面角B-DM-F的大小的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

若關(guān)于x的方程﹙lgx﹚2-2mlgx+(m-
1
4
)=0有兩個(gè)大于1的根,求m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),過(guò)焦點(diǎn)垂直于長(zhǎng)軸的直線被橢圓截得的弦長(zhǎng)為
7
2
,橢圓C的離心率為
3
4

(1)求橢圓C的方程;
(2)若P為橢圓C上的動(dòng)點(diǎn),M為過(guò)P且垂直于x軸的直線上的點(diǎn),
|OP|
OM
=λ,求點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線.

查看答案和解析>>

科目: 來(lái)源: 題型:

若a、b、c>0,求證:(b+c-a)(c+a-b)(a+b-c)≤abc.

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)函數(shù)fn(x)=2sin(anx+
π
6
)(an>0,n∈N*),其周期為n(n+1),Sn是數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)求an,Sn的表達(dá)式;
(Ⅱ)設(shè)bn=fn(1),求{bn}的最大、最小項(xiàng)的值;
(Ⅲ)在(2)的條件下,證明:bn<Sn

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=x2-ax+ln
ax+1
2
(a>0)

(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若對(duì)任意a∈(1,2),總存在x0∈[
1
2
,1]
,使不等式f(x0)>k(1-a2)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

某校內(nèi)有一塊以O(shè)為圓心,R(R為常數(shù),單位為米)為半徑的半圓形(如圖)荒地,該校總務(wù)處計(jì)劃對(duì)其開(kāi)發(fā)利用,其中弓形BCDB區(qū)域(陰影部分)用于種植學(xué)校觀賞植物,△OBD區(qū)域用于種植花卉出售,其余區(qū)域用于種植草皮出售.已知種植學(xué)校觀賞植物的成本是每平方米20元,種植花卉的利潤(rùn)是每平方米80元,種植草皮的利潤(rùn)是每平方米30元.
(1)設(shè)∠BOD=θ(單位:弧度),用θ表示弓形BCDB的面積S=f(θ);
(2)如果該?倓(wù)處邀請(qǐng)你規(guī)劃這塊土地,如何設(shè)計(jì)∠BOD的大小才能使總利潤(rùn)最大?并求出該最大值.
(參考公式:扇形面積公式S=
1
2
R2θ=
1
2
Rl,l表示扇形的弧長(zhǎng))

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|2x-1|+|ax-3|,x∈R
(Ⅰ)若a=1時(shí),解不等式f(x)≤5;
(Ⅱ)若a=2時(shí),g(x)=
1
f(x)+m
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知f(x)=lnx-x+a+1
(1)若存在 x∈(0,+∞)使得f(x)≥0成立,求a的范圍;
(2)求證:當(dāng)x>1時(shí),在(1)的條件下,
1
2
x2+ax-a>xlnx+
1
2
成立.

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)函數(shù)f(x)=Acosωx(A>0,ω>0)的部分圖象如圖所示,其中△PQR為等腰直角三角形,∠PQR=
π
2
,PR=1.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)y=f(x)-
1
4
在x∈[0,4]時(shí)的所有零點(diǎn)之和.

查看答案和解析>>

同步練習(xí)冊(cè)答案