相關(guān)習(xí)題
 0  210933  210941  210947  210951  210957  210959  210963  210969  210971  210977  210983  210987  210989  210993  210999  211001  211007  211011  211013  211017  211019  211023  211025  211027  211028  211029  211031  211032  211033  211035  211037  211041  211043  211047  211049  211053  211059  211061  211067  211071  211073  211077  211083  211089  211091  211097  211101  211103  211109  211113  211119  211127  266669 

科目: 來源: 題型:

數(shù)列{an}的前n項和為Sn=2n+1-2,數(shù)列{bn}是首項為a1,公差為d(d≠0)的等差數(shù)列,且b1,b3,b11成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:

已知點(1,
1
3
)是函數(shù)f(x)=ax(a>0,a≠1)的圖象上一點.等比數(shù)列{an}的前n項和為f(n)-c.?dāng)?shù)列{bn}(bn>0)的首項為c,且前n項和Sn滿足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求數(shù)列{an}和{bn]的通項公式;   
(2)若數(shù)列{
1
bnbn+1
}的前n項和為Tn,問滿足Tn
1001
2012
的最小正整數(shù)n是多少?

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x3-3x2+2x
(Ⅰ)在p0處的切線平行于直線y=-x-1,求p0點的坐標(biāo);
(Ⅱ)求過原點的切線方程.

查看答案和解析>>

科目: 來源: 題型:

已知Sn為數(shù)列{an}的前n項和,且有a1=1,Sn+1=an+1(n∈N*).
(Ⅰ) 求數(shù)列{an}的通項an;
(Ⅱ) 若bn=
n
4an
,求數(shù)列{bn}的前n項和Tn;
(Ⅲ)是否存在最小正整數(shù)m,使得不等式
n
k=1
k+2
Sk•(Tk+k+1)
<m
對任意正整數(shù)n恒成立,若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知
a
=(2,1),
b
=(-3,4),求:
a
+
b
,
a
-
b
,3
a
+4
b
的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

已知M(2,2
2
)為拋物線C:y2=2px(p>0)上一點
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)設(shè)A、B拋物線C上異于原點O的兩點且∠AOB=90°,求證:直線AB恒過定點,并求出該定點坐標(biāo);
(3)在(2)的條件下,若過原點O向直線AB作垂線,求垂足P(x,y)的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,已知a1=5,an+1=Sn+3n(n∈N*).
(1)令bn=Sn-3n,求證:{bn}是等比數(shù)列;
(2)令cn=
1
log2bn+1•log2bn+2
,設(shè)Tn是數(shù)列{cn}的前n項和,求滿足不等式Tn
2011
4026
的n的最小值.

查看答案和解析>>

科目: 來源: 題型:

已知圓C1:(x-1)2+(y-2)2=1
(1)求過點P(2,4)所作的圓C1的切線方程;
(2)若圓C1與圓C2:(x+1)2+(y-1)2=4相交于A、B兩點,求線段AB的長度.

查看答案和解析>>

科目: 來源: 題型:

如圖,已知△ABC與△BCD所在平面互相垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,點P,Q分別在線段BD,CD上,沿直線PQ將△PQD向上翻折,使D與A重合.
(Ⅰ)求證:AB⊥CQ;
(Ⅱ)求直線AP與平面ACQ所成的角.

查看答案和解析>>

科目: 來源: 題型:

已知
OA
=
a
OB
=
b
a
b
=丨
a
-
b
丨=2,求S△AOB有最大值時
a
b
的夾角.

查看答案和解析>>

同步練習(xí)冊答案