相關(guān)習(xí)題
 0  209370  209378  209384  209388  209394  209396  209400  209406  209408  209414  209420  209424  209426  209430  209436  209438  209444  209448  209450  209454  209456  209460  209462  209464  209465  209466  209468  209469  209470  209472  209474  209478  209480  209484  209486  209490  209496  209498  209504  209508  209510  209514  209520  209526  209528  209534  209538  209540  209546  209550  209556  209564  266669 

科目: 來源: 題型:

設(shè)函數(shù)f(x)=x2+
2
x
+alnx,a∈R,其導(dǎo)函數(shù)為f′(x);
(Ⅰ)當(dāng)a=-4時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a≤4時(shí),?x1,x2∈(0,+∞),x1≠x2,求證:|f′(x1)-f′(x2)|>|x1-x2|.

查看答案和解析>>

科目: 來源: 題型:

已知公比為整數(shù)的等比數(shù)列{an}中,a1=1,a3=2a2+3,在等差數(shù)列{bn}中,公差d=2,且b1+b2+b3=15.
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an•bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目: 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù)
(1)f(x)=(1+sinx)(1-4x)    
(2)f(x)=ln(x+1)-
x
x+1

查看答案和解析>>

科目: 來源: 題型:

已知:
sin215°+sin275°+sin2135°=
3
2
,
sin230°+sin290°+sin2150°=
3
2

sin245°+sin2105°+sin2165°=
3
2
,
通過觀察上述三個(gè)等式的規(guī)律,請(qǐng)你寫出一般性的命題,并對(duì)該命題進(jìn)行證明.

查看答案和解析>>

科目: 來源: 題型:

如圖,在幾何體ABCDE中,CA=CB=2,CA⊥CB,CD⊥平面ABC,F(xiàn)為線段AB的中點(diǎn),EF∥CD,EF=CD=
2

(Ⅰ)求證:平面ABE⊥平面ADE.
(Ⅱ)求幾何體ABCDE的體積.

查看答案和解析>>

科目: 來源: 題型:

如圖,正三棱柱ABC-A1B1C1中,D是BC中點(diǎn),AA1=AB=a.
(Ⅰ)求證:AD⊥B1D;
(Ⅱ)求二面角B1-AD-B余弦值的大小;
(Ⅲ)求三棱錐C-AB1D的體積.

查看答案和解析>>

科目: 來源: 題型:

已知向量
a
=(cos(x+
π
8
),sin2(x+
π
8
)),
b
=(sin(x+
π
8
),1),函數(shù)f(x)=2
a
b
-1.
(Ⅰ)求函數(shù)f(x)的解析式,并寫出函數(shù)f(x)的周期與對(duì)稱中心坐標(biāo);
(Ⅱ)求函數(shù)y=f(-
1
2
x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2cos(ωx+
π
3
),ω>0,x∈R,且以π為最小正周期.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)已知f(
α
2
-
π
6
)=
8
5
,求sinα的值.

查看答案和解析>>

科目: 來源: 題型:

學(xué)校舉行定點(diǎn)投籃比賽,規(guī)定每人投籃4次,投中一球得2分,沒有投中得0分,假設(shè)每次投籃投中與否是相互獨(dú)立的.已知小明每次投籃投中的概率都是
1
3
;小強(qiáng)每次投籃投中的概率都是p(0<p<1).
(1)求小明在投籃過程中直到第三次才投中的概率;
(2)求小明在4次投籃后的總得分ξ的分布列和期望;
(3)小強(qiáng)投籃4次,投中的次數(shù)為X,若期望E(X)=1,求p和X的方差V(X).

查看答案和解析>>

科目: 來源: 題型:

某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測試,學(xué)生如果通過其中2次測試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測試,而每個(gè)學(xué)生最多也只能參加5次測試.假設(shè)某學(xué)生每次通過測試的概率都是
2
3
,每次測試通過與否互相獨(dú)立.
(Ⅰ)求該學(xué)生考上大學(xué)的概率.
(Ⅱ)如果考上大學(xué)或參加完5次測試就結(jié)束,記該生參加測試的次數(shù)為X,求X的分布列及X的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案