相關(guān)習(xí)題
 0  209149  209157  209163  209167  209173  209175  209179  209185  209187  209193  209199  209203  209205  209209  209215  209217  209223  209227  209229  209233  209235  209239  209241  209243  209244  209245  209247  209248  209249  209251  209253  209257  209259  209263  209265  209269  209275  209277  209283  209287  209289  209293  209299  209305  209307  209313  209317  209319  209325  209329  209335  209343  266669 

科目: 來(lái)源: 題型:

已知(2+3x)10=a0+a1(2+x)+a2(2+x)2+…+a10(2+x)10
(1)求a2的值(用代數(shù)式表示);    
(2)求a0+a2+a4+…+a10的值;
(3)求a1+2a2+3a3+…+10a10的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知各項(xiàng)均大于1的數(shù)列{an}滿足:a1=
3
2
,an+1=
1
2
(an+
1
an
)
(n∈N*).
(Ⅰ)求證:數(shù)列{log5
an+1
an-1
}
是等比數(shù)列;
(Ⅱ)求證:
a1
a2
+
a2
a3
+…+
an
an+1
<n+
1
2
(n∈N*)

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3-6x+5,x∈R
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若直線y=a與y=f(x)的圖象有三個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

在等差數(shù)列{an}中,a4=-12,a8=-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)從數(shù)列{an}中依次取出a1,a2,a4,a8,…,a2n-1,構(gòu)成一個(gè)新的數(shù)列{bn},求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E為棱CC1的中點(diǎn).
(1)求證:BD⊥AE;
(2)求點(diǎn)A到平面BDE的距離.

查看答案和解析>>

科目: 來(lái)源: 題型:

四棱錐S-ABCD,底面ABCD為平行四邊形,側(cè)面SBC⊥底面ABCD,已知∠DAB=135°,BC=2
2
,SB=SC=AB=2,F(xiàn)為線段SB的中點(diǎn).
(Ⅰ)求證:SD∥平面CFA;
(Ⅱ)證明:SA⊥BC.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)y=
x
-x,當(dāng)0≤x≤1時(shí),求函數(shù)的最大值與最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<
π
2
)

(1)若cos(ϕ+
π
2
)=-
2
2
,求ϕ的值;
(2)若f(x)最大值與最小值之差等于4,其相鄰兩條對(duì)稱軸之間的距離等于
π
3
,求函數(shù)f(x)的解析式;
(3)在(2)的條件下,求最小正實(shí)數(shù)m,使f(x)圖象向右平移m個(gè)單位對(duì)應(yīng)的函數(shù)是偶函數(shù)(只需寫出m的值,可不寫步驟)

查看答案和解析>>

科目: 來(lái)源: 題型:

已知數(shù)列{an}有a1=a,a2=p(p為常數(shù)),對(duì)任意的n∈N,有Sn=
n(an-a1)
2

(1)求a的值;    
(2)判斷數(shù)列{an}是否為等差數(shù)列;
(3)對(duì)于數(shù)列{bn},假如常數(shù)b滿足對(duì)任意的n∈N*都有bn<b成立,則稱b為數(shù)列{bn}的“上界”.令pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
,求證:3是數(shù)列{p1+p2+…+pn-2n}的“上界”.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(1)求PB和平面PAD所成的角的大小;
(2)證明:AE⊥平面PCD;
(3)求二面角A-PD-C得到正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案