相關(guān)習(xí)題
 0  207340  207348  207354  207358  207364  207366  207370  207376  207378  207384  207390  207394  207396  207400  207406  207408  207414  207418  207420  207424  207426  207430  207432  207434  207435  207436  207438  207439  207440  207442  207444  207448  207450  207454  207456  207460  207466  207468  207474  207478  207480  207484  207490  207496  207498  207504  207508  207510  207516  207520  207526  207534  266669 

科目: 來源: 題型:

已知分段函數(shù)f(x)為R上的奇函數(shù),當(dāng)x>0時,f(x)=x2-2x+3,求f(x)的解析式.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)的定義域為[0,1].
(1)求E(x)=f(x+m)+f(x-m)(m>0)的定義域;
(2)若0<a<
1
2
,求F(x)=f(x+a)+f(x-a)的定義域.

查看答案和解析>>

科目: 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
(1)求證:AB⊥PE;
(2)求二面角A-PB-E的大。

查看答案和解析>>

科目: 來源: 題型:

長度為3的線段AB的兩個端點A,B分別在x,y軸上移動,點P在直線AB上且滿足
BP
=2
PA

(1)求點P的軌跡方程;
(2)記點P的軌跡為曲線C,斜率為1的直線?交曲線C于E,F(xiàn)兩點,線段EF的垂直平分線通過點Q(x0,0),求△QEF面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列(0,2)滿足首項為a1=2,an+1=2an,k(2e2)=15-2e2>0.設(shè)bn=3log2an-2k(2e2)=15-2e2>0,數(shù)列{cn}滿足.cn=anbn
(Ⅰ)求證:數(shù)列{bn}成等差數(shù)列;
(Ⅱ)求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
-x2+3x+10
,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

已知實數(shù)a>0,函數(shù)f(x)=x2-ax-2a-b,g(x)=a2lnx-(a2+a)lna,F(xiàn)(x)=f(x)-g(x).
(Ⅰ)當(dāng)a=1,b=0時,求函數(shù)F(x)單調(diào)區(qū)間;
(Ⅱ)對?x∈(0,+∞),a∈(0,+∞),F(xiàn)(x)>0恒成立,求實數(shù)b的取值范圍.(結(jié)果用a表示)

查看答案和解析>>

科目: 來源: 題型:

已知向量
m
=(sinx,
3
sinx),
n
=(sinx,cosx),設(shè)函數(shù)f(x)=
m
n

(Ⅰ)求函數(shù)f(x)的解析式,并求f(x)在區(qū)間[-
π
4
,
π
6
]上的最小值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,A為銳角,若f(A)+f(-A)=
3
2
,b+c=7,△ABC的面積為2
3
,求a.

查看答案和解析>>

科目: 來源: 題型:

已知算法:
第一步,輸入整數(shù)n;
第二步,判斷1≤n≤7是否成立,若是,執(zhí)行第三步;否則,輸出“輸入有誤,請輸入?yún)^(qū)間[1,7]中的任意整數(shù)”,返回執(zhí)行第一步;
第三步,判斷n≤1000是否成立,若是,輸出n,并執(zhí)行第四步;否則,結(jié)束;
第四步,n=n+7,返回執(zhí)行第三步;
第五步,結(jié)束.
(Ⅰ)若輸入n=7,寫出該算法輸出的前5個值;
(Ⅱ)畫出該算法的程序框圖.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
ex
a
+
a
ex
(a>0,a∈R)是R上的偶函數(shù).
(1)求a的值;
(2)證明函數(shù)f(x)在[0,+∞)上是增函數(shù);
(3)設(shè)x∈[t,t+1],用含t的表達式表示函數(shù)f(x)在[t,t+1]上的最小值g(t),求g(t)的表達式.

查看答案和解析>>

同步練習(xí)冊答案