科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題二練習(xí)卷(解析版) 題型:選擇題
一個(gè)球的體積、表面積分別為V,S,若函數(shù)V=f(S),f′(S)是f(S)的導(dǎo)函數(shù),則f′(π)=( )
A. B. C.1 D.π
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題二練習(xí)卷(解析版) 題型:選擇題
設(shè)函數(shù)f(x)=x3-4x+a(0<a<2)有三個(gè)零點(diǎn)x1,x2,x3,且x1<x2<x3,則下列結(jié)論中正確的是( )
A.x1>-1 B.x2<0 C.x3>2 D.0<x2<1
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題二練習(xí)卷(解析版) 題型:選擇題
函數(shù)y=-cos 2x的圖像大致是( )
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題二練習(xí)卷(解析版) 題型:選擇題
設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(2-x)f′(x)的圖像如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(1)和極小值f(-1)
B.函數(shù)f(x)有極大值f(1)和極小值f(2)
C.函數(shù)f(x)有極大值f(2)和極小值f(1)
D.函數(shù)f(x)有極大值f(-1)和極小值f(2)
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題二練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=則f(f(9))=________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題二練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=x3+f′x2-x,f(x)的圖像在點(diǎn),f處的切線的斜率是________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題二練習(xí)卷(解析版) 題型:填空題
設(shè)函數(shù)f(x)的定義域?yàn)?/span>D,若存在非零實(shí)數(shù)n使得對于任意x∈M(M⊆D),有x+n∈D,且f(x+n)≥f(x),則稱f(x)為M上的n高調(diào)函數(shù).如果定義域?yàn)?/span>[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的k高調(diào)函數(shù),那么實(shí)數(shù)k的取值范圍是________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題二練習(xí)卷(解析版) 題型:填空題
f(x)=|2x-1|,f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),則函數(shù)y=f4(x)的零點(diǎn)個(gè)數(shù)為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題二練習(xí)卷(解析版) 題型:解答題
(13分)某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)=x2+10x(萬元);當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)=51x+-1 450(萬元).每件商品售價(jià)為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題二練習(xí)卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=ln x+x2-(a+1)x(a>0,a為常數(shù)).
(1)討論f(x)的單調(diào)性;
(2)若a=1,證明:當(dāng)x>1時(shí),f(x)< x2--.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com