科目: 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044
已知函數(shù)f(x)是y=-1(x∈R)的反函數(shù),函數(shù)g(x)的圖象與函數(shù)y=-的圖象關于y軸對稱,設F(x)=f(x)+g(x),
(1)求函數(shù)F(x)的解析式及定義域;
(2)試問在函數(shù)F(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直?若存在,求出A,B的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044
已知1≤x≤10,且xy2=100,求(lgx)2+(lgy)2的最大值和最小值,并求其取最大值和最小值時相對應的x和y值.
查看答案和解析>>
科目: 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044
已知函數(shù)f(x)=log(b<0)
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性,并說明理由.
(3)指出f(x)在區(qū)間(-b,+∞)上的單調(diào)性,并予以說明.
查看答案和解析>>
科目: 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044
通過研究學生的學習行為,專家發(fā)現(xiàn),學生的注意力隨著老師講課時間的變化而變化,講課開始時,學生的興趣激增;中間有一段時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散,設f(x)表示學生注意力隨時間t(分鐘)的變化規(guī)律(f(t)越大,表明學生注意力越集中),經(jīng)過實驗分析得知:
f(t)=
(1)講課開始后多少分鐘,學生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開始后5分鐘與講課后25分鐘比較,何時學生的注意力更集中?
(3)一道數(shù)學難題,需要講解24分鐘,并且要求學生的注意力至少達到180,那么經(jīng)過適當安排,老師能否在學生達到所需的狀態(tài)下講授完這道題目?
查看答案和解析>>
科目: 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044
設函數(shù)f(x)=x2+2bx+c(c<b<1),f(1)=0,且方程f(x)+1=0有實根.
(1)證明:-3<c≤-1且b≥0;
(2)若m是方程f(x)+1=0的一個實根,判斷f(m-4)的正負并加以證明.
查看答案和解析>>
科目: 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044
已知函數(shù)f(x)=ax2+a2x+2b-a3,當x∈(-2,6)時,其值為正,而當x∈(-∞,-2)∪(6,+∞)時,其值為負.
(1)求a,b的值及函數(shù)f(x)表達式;
(2)設F(x)=-f(x)+1.如果F(x)圖象與一次函數(shù)圖象y=-kx-56有兩個不同的交點,求F(x)圖象被x軸截得的弦長的取值范圍.
查看答案和解析>>
科目: 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044
已知二次函數(shù)f(x)=ax2+bx(a,b為是常數(shù)且a≠0)滿足條件:f(2)=0且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)問是否存在實數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[2m,2n],如存在,求出m,n的值;如不存在,說明理由.
查看答案和解析>>
科目: 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044
已知兩點P(0,1)和Q(1,0),若二次函數(shù)y=x2+ax+3的圖象與線段PQ有交點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044
已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=-bx,其中a,b,c滿足a>b>c,a+b+c=0
(a,b,c∈R且a≠0).
(1)求證:兩函數(shù)的圖象交于不同的兩點A,B;
(2)求線段AB在x軸上的射影A1B1之長的取值范圍.
查看答案和解析>>
科目: 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044
函數(shù)f(x)=x2-4x-4在閉區(qū)間[t,t+1](t∈R)上的最小值記為g(t).
(1)試寫出g(t)的函數(shù)表達式;
(2)作g(t)的圖象并寫出g(t)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com